

Instructor Manual

For 50 Minutes Lectures

Week 1

1/9/2019 – 5/9/2019

Chapter 0 Introduction to Problem-Solving

This Week Events	– None
Next Week Events	 Lab #1 (Chapter 1 – Part 1)

CPIT 110

Instructor Manual – Lecture #1 in Week 1

	0. Introduction to Problem-Solving 3 (50 minutes / Lecture)	Week	Lecture 1 of 3
Lecture Slides	1 of 3 1 - 17	1	Slides
Date	Sunday 1/9/2019		1-1/

Topics to Be Covered

* 0.1. Problem-Solving & Computer Science

- 0.1.1. What is Computer Science?
- 0.1.2. Algorithms

Learning Objectives

Learning Outcomes	Topics
 To explain what problem solving is, and why it is important. To understand how to write algorithms. 	0.1. Problem-Solving & Computer Science

Exercises

* 0.1 Problem-Solving & Computer Science

- What is the difference between Computer Science and Problem Solving?
- What is an algorithm?

CPIT 110

Instructor Manual – Lecture #2 in Week 1

		Week	Lecture 2 of 3
Lecture Slides	2 of 3 18 - 47	1	Slides
Date	Tuesday 3/9/2019		18 - 47

Topics to Be Covered

- ***** 0.2. Program Design & Problem-Solving Techniques
 - 0.2.1. How Do We Write a Program?
 - 0.2.2. Problem-Solving Phase
 - 0.2.3. Implementation Phase

✤ 0.3. Steps in Program Development

- 0.3.1. Steps in Program Development
- 0.3.2. Designing a Solution (Algorithm)
- 0.3.3. Verifying the Algorithm

Learning Objectives

Learning Outcomes	Topics
 To describe how a program can be designed. 	0.2. Program Design & Problem-Solving Techniques
 To describe algorithms in different forms. 	0.3. Steps in Program Development

Exercises

* 0.2. Program Design & Problem-Solving Techniques

- What is the first step to write a program?
- ✤ 0.3. Steps in Program Development
 - What are the steps in Program Development?

CPIT 110

Instructor Manual – Lecture #3 in Week 1

	0. Introduction to Problem-Solving 3 (50 minutes / Lecture)	Week	Lecture 3 of 3
Lecture Slides	3 of 3 48 - 101	1	Slides 48 - 101
Date	Thursday 5/9/2019		40 - 101

Topics to Be Covered

✤ 0.4. Algorithms, Pseudocode, and Flowcharts

✤ 0.5. Decision Structures

Learning Objectives

Learning Outcomes	Topics
 To understand the difference between algorithms and pseudocode. To draw program flowcharts. 	0.4. Algorithms, Pseudocode, and Flowcharts
 To understand the concept of decision structures. 	0.5. Decision Structures

Exercises

✤ 0.4. Algorithms, Pseudocode, and Flowcharts

• What is the difference between the algorithm and Pseudocode?

✤ 0.5. Decision Structures

- Write an Algorithm, Pseudocode, and draw a flowchart that will:
 - Check whether a person can drive or not.
 - Check if a number is prime.
 - Calculate Zakat of any amount. (Note: No Zakat if the amount is lower than 1200).