

CPIT 110

Instructor Manual

For 50 Minutes Lectures

Week 10

03/11/2019 - 07/11/2019

Chapter 5

Loops

This Week Events	Lab #7 (Chapter 5 Part 1)
Next Week Events	Lab #8 (Chapter 5 Part 2)

CPIT 110 Instructor Manual – Lecture #1 in Week 10

Chapter	5. Loops	,
Number of Lectures	3 (50 minutes / Lecture)	'
Lecture	3 of 6	
Slides	67 - 95	
Date	Sunday 03/11/2019	

Topics to Be Covered

❖ 5.3. The for Loop

Learning Objectives

Learning Outcomes	Topics
To use for loops to implement counter- controlled loops.	5.3. The for Loop

Exercises

❖ 5.3. The for Loop

1. Suppose the input is 2 3 4 5 0 (one number per line). What is the output of the following code?

```
1  number = 0
2  sum = 0
3
4  for count in range(5):
5    number = eval(input("Enter an integer: "))
6    sum += number
7
8  print("sum is", sum)
9  print("count is", count)
```

- 2. Can you convert any for loop to a while loop? List the advantages of using for loops.
- 3. Convert the following for loop statement to a while loop:

```
1  sum = 0
2  for i in range(1001):
3    sum = sum + i
```

4. Can you always convert any while loop into a for loop? Convert the following while loop into a for loop:

```
1  i = 1
2  sum = 0
3  while sum < 10000:
4    sum = sum + i
5    i += 1</pre>
```

5. Count the number of iterations in the following loops:

```
count = 0
while count < n:
    count += 1

count = 5
while count < n:
    count += 1

count += 1

count = 5
while count < n:
    count = count + 3</pre>
```


CPIT 110 Instructor Manual – Lecture #2 in Week 10

Chapter Number of Lectures	5. Loops 3 (50 minutes / Lecture)	Week	Lecture 4 of 6
Lecture	4 of 6	10	
Slides	96 - 130	10	Slides
Date	Tuesday 05/11/2019		96 - 130

Topics to Be Covered

- ❖ 5.4. Nested Loops
- ❖ 5.5. Minimizing Numerical Errors
- ❖ 5.6. Case Studies [...]

Learning Objectives

Learning Outcomes	Topics
 To write nested loops. 	5.4. Nested Loops
 To learn the techniques for minimizing numerical errors. 	5.5. Minimizing Numerical Errors
To learn loops from a variety of examples.	5.6. Case Studies []

Exercises

❖ 5.4. Nested Loops

1. Show the output of the following programs. (Hint: Draw a table and list the variables in the columns to trace these programs).

```
i = 0
for i in range (1, 5):
                                              while i < 5:
    j = 0
                                                  for j in range(i, 1, -1):
    while j < i:
                                                      print(j, end = "")
       print(j, end = "")
                                                  print("****")
        j += 1
                                                  i += 1
i = 5
                                              i = 1
while i >= 1:
                                              while i <= 5:
    num = 1
                                                  num = 1
    for j in range(1, i + 1):
                                                  for j in range(1, i + 1):
        print(num, end = "xxx")
                                                      print(num, end = "G")
        num *= 2
                                                      num += 2
    print()
                                                  print()
    i -= 1
                                                  i += 1
```

2. If you think that a divisor for a number n1 cannot be greater than n1 / 2, you might attempt to improve the program using the following loop. This revision is wrong. Can you find the reason?

```
1  k = 2
2  while k <= and k <= :
3    if n1 % k == 0 and n2 % k == 0:
4         gcd = k
5    k += 1</pre>
```


CPIT 110 Instructor Manual – Lecture #3 in Week 10

Chapter	5. Loops	Week
Number of Lectures	3 (50 minutes / Lecture)	vveek
Lecture	5 of 6	10
Slides	131 - 160	10
Date	Thursday 07/11/2019	

Topics to Be Covered

❖ 5.6. Case Studies [...Continued]

Learning Objectives

Learning Outcomes	Topics	
 To learn loops from a variety of examples. 	5.6. Case Studies [Continued]	

Exercises

No exercises.