

CPIT 110

Instructor Manual
For 50 Minutes Lectures

Week 14
1/12/2019 – 5/12/2019

Chapter 6

Functions

This Week Events − Lab #9 (Chapter 6)

Next Week Events
− Final Exam - Part 2 Writing Code

− Final Exam - Part 1 MCQ (Week #16)

Page 2 of 7

CPIT 110

Instructor Manual – Lecture #1 in Week 14

Chapter 6. Functions

Number of Lectures 3 (50 minutes / Lecture)

Lecture 4 of 6

Slides 100 - 114

Date Sunday 1/12/2019

Topics to Be Covered

❖ 6.5. Positional and Keyword Arguments

❖ 6.6. Passing Arguments by Reference Values

Learning Objectives

Learning Outcomes Topics

− To invoke a function using positional arguments
or keyword arguments.

6.5. Positional and Keyword Arguments

− To pass arguments by passing their reference
value.

6.6. Passing Arguments by Reference Values

Exercises

❖ 6.5. Positional and Keyword Arguments

1. Compare positional arguments and keyword arguments.

2. Suppose a function header is as follows:
def f(p1, p2, p3, p4):

Which of the following calls are correct?

▪ f(1, p2 = 3, p3 = 4, p4 = 4)

▪ f(1, p2 = 3, 4, p4 = 4)

▪ f(p1 = 1, p2 = 3, 4, p4 = 4)

▪ f(p1 = 1, p2 = 3, p3 = 4, p4 = 4)

▪ f(p4 = 1, p2 = 3, p3 = 4, p1 = 4)

Week

14

Lecture
4 of 6
Slides

100 - 114

Page 3 of 7

❖ 6.6. Passing Arguments by Reference Values

1. What is pass-by-value?

2. Can the argument have the same name as its parameter?

3. Show the result of the following programs:

def main():

 max = 0

 getMax(1, 2, max)

 print(max)

def getMax(value1, value2, max):

 if value1 > value2:

 max = value1

 else:

 max = value2

main()

def main():

 i = 1

 while i <= 6:

 print(function1(i, 2))

 i += 1

def function1(i, num):

 line = ""

 for j in range(1, i):

 line += str(num) + " "

 num *= 2

 return line

main()

def main():

 # Initialize times

 times = 3

 print("Before the call, variable",

 "times is", times)

 # Invoke nPrintln and display times

 nPrint("Welcome to CS!", times)

 print("After the call, variable",

 "times is", times)

Print the message n times

def nPrint(message, n):

 while n > 0:

 print("n = ", n)

 print(message)

 n -= 1

main()

def main():

 i = 0

 while i <= 4:

 function1(i)

 i += 1

 print("i is", i)

def function1(i):

 line = " "

 while i >= 1:

 if i % 3 != 0:

 line += str(i) + " "

 i -= 1

 print(line)

main()

4. For (a) in the preceding question, show the contents of the stack just before the function max is

invoked, just as max is entered, just before max is returned, and right after max is returned.

Page 4 of 7

CPIT 110

Instructor Manual – Lecture #2 in Week 14

Chapter 6. Functions

Number of Lectures 3 (50 minutes / Lecture)

Lecture 5 of 6

Slides 115 - 136

Date Tuesday 3/12/2019

Topics to Be Covered

❖ 6.7. Modularizing Code

Topics Not to Be Covered

• 6.8. Case Study: Converting Decimals to Hexadecimal

Learning Objectives

Learning Outcomes Topics

− To develop reusable code that is modular and is
easy to read, debug, and maintain.

6.7. Modularizing Code

Exercises

No exercises.

Week

14

Lecture
5 of 6
Slides

115 - 136

Page 5 of 7

CPIT 110

Instructor Manual – Lecture #3 in Week 14

Chapter 6. Functions

Number of Lectures 3 (50 minutes / Lecture)

Lecture 6 of 6

Slides 137 - 165

Date Thursday 5/12/2019

Topics to Be Covered

❖ 6.9. The Scope of Variables

❖ 6.10. Default Arguments

❖ 6.11. Returning Multiple Values

Topics Not to Be Covered

• 6.12. Case Study: Generating Random ASCII Characters

• 6.13. Function Abstraction and Stepwise Refinement

• 6.14. Case Study: Reusable Graphics Functions

Learning Objectives

Learning Outcomes Topics

− To determine the scope of variables. 6.9. The Scope of Variables

− To define functions with default arguments. 6.10. Default Arguments

− To define a function that returns multiple
values.

6.11. Returning Multiple Values

Week

14

Lecture
6 of 6
Slides

137 - 165

Page 6 of 7

Exercises

❖ 6.9. The Scope of Variables

1. What is the printout of the following code?

def function(x):

 print(x)

 x = 4.5

 y = 3.4

 print(y)

x = 2

y = 4

function(x)

print(x)

print(y)

def f(x, y = 1, z = 2):

 return x + y + z

print(f(1, 1, 1))

print(f(y = 1, x = 2, z = 3))

print(f(1, z = 3))

2. What is wrong in the following code?

1 def function():

2 x = 4.5

3 y = 3.4

4 print(x)

5 print(y)

6

7 function()

8 print(x)

9 print(y)

3. Can the following code run? If so, what is the printout?

1 x = 10

2 if x < 0:

3 y = -1

4 else:

5 y = 1

6

7 print("y is", y)

Page 7 of 7

❖ 6.10. Default Arguments

1. Show the printout of the following code:

1 def f(w = 1, h = 2):

2 print(w, h)

3

4 f()

5 f(w = 5)

6 f(h = 24)

7 f(4, 5)

2. Identify and correct the errors in the following program:

1 def main():

2 nPrintln(5)

3

4 def nPrintln(message = "Welcome to Python!", n):

5 for i in range(n):

6 print(message)

7

8 main() # Call the main function

3. What happens if you define two functions in a module that have the same name?

❖ 6.11. Returning Multiple Values

1. Can a function return multiple values? Show the printout of the following code:

1 def f(x, y):

2 return x + y, x - y, x * y, x / y

3

4 t1, t2, t3, t4 = f(9, 5)

5 print(t1, t2, t3, t4)

