
Chapter 0
Introduction to Problem-Solving
CPIT 110 (Problem-Solving and Programming)

Version 2.0

Sections

2

• 0.1. Problem-Solving & Computer Science

• 0.2. Program Design & Problem-Solving Techniques

• 0.3. Steps in Program Development

• 0.4. Algorithms, Pseudocode, & Flowcharts

• 0.5. Decision Structures

Examples

https://youtu.be/gVpGg29Tx7A?t=1560
https://youtu.be/gVpGg29Tx7A
https://youtu.be/YfRWCmf1r9A?t=602
https://youtu.be/YfRWCmf1r9A
https://youtu.be/4uqXJSXO4xg

Examples

3

• Example 1: Road Example

• Example 2: Area of a Rectangle Calculator

• Example 3: Simple Calculator

• Example 4: Determining a Student’s Final Grade

• Example 5: Converting The Length

• Example 6: Area of a Rectangle Calculator

• Example 7: Determining The Largest Value

Python Online IDE

https://repl.it/languages/python3

Objectives

4

• To explain what problem solving is, and why it is important (0.1).

• To understand how to write algorithms (0.1–0.5).

• To describe how a program can be designed (0.2–0.3).

• To describe algorithms in different forms (0.4).

• To understand the difference between algorithms and pseudocode (0.4).

• To draw program flowcharts (0.4-0.5).

• To understand decision Structures (0.5).

0.1. Problem-Solving & Computer
Science

5

▪ What is Computer Science?

▪ Example 1: Road Example

▪ Algorithms

▪ Example 2: Area of a Rectangle Calculator

https://youtu.be/4uqXJSXO4xg

What is Computer Science?

6

• Computer Science can be summarized with two simple words:
problem solving.

• Computer Science is the study of problems, problem-solving, and
the solutions that come out of this problem-solving process.

• Given a problem, the goal is to develop an algorithm to solve the
problem.

• An algorithm is a step-by-step list of instructions to solve the
problem.

0.1

Road Example
Example 1

7

Imagine that you have the following
image, which is a map of a road
leading to the building shown in the
picture.

• There are a car and trees.

• The car cannot cross the trees.

• The road is divided into squares to
calculate the steps of the car.

• Each square is considered as one
step.

How can the car arrive at the building?

Example 10.1

Road Example
Solution A

8

• Step 1: Move to the right three steps.

• Step 2: Move to down two steps.

• Step 3: Move to the left one step.

• Step 4: Move to down two steps.

• Step 5: Move to the right one step.

• Step 6: Move to down one step. Step 1

Step 3 Step 4 Step 5

Step 2

Step 6

Example 10.1

Road Example
Solution B

9

• Step 1: Move to down four steps.

• Step 2: Move to the right three steps.

• Step 3: Move to down one step.

Step 1 Step 2 Step 3

Example 10.1

Road Example
Different Solutions

10

• As we can see that Solution A and Solution B are both correct
solutions to the same problem, but there are differences in the
complexity and efficiency of the solutions.

• The cost of Solution A is 10 steps while Solution B is 8 steps, so we
consider Solution B as a better solution based on the number of
steps.

• Reducing the number of steps in the previous example means
reducing the amount of fuel needed by the vehicle and speeding up
the arrival time.

Example 10.1

Algorithms

11

• An algorithm is a set of obvious, logical, and sequential
steps that solve a specific problem.

• To put it simply, the algorithm is like a recipe for preparing
a specific food.

• Following the steps of the algorithm will end up solving
the problem.

0.1

Area of a Rectangle Calculator
Example 2

12

Write an algorithm that can calculate the area of a
rectangle. The width and the height of the rectangle
should be taken from the user.

Note:
Area = Width × Height

Example 20.1

Area of a Rectangle Calculator
Solution A

13

Solution A – Good:
1. Ask the user to enter Width

2. Ask the user to enter Height

3. Set Area to (Width × Height)

4. Display Area for the user

• As you can see in this solution, we have described the steps that are
going to solve the problem.

• You can describe the steps in your own way, but your description of
the steps should be obvious, logical, and sequential.

Example 20.1

Area of a Rectangle Calculator
Solution B

14

Solution B - Bad:
1. Ask the user to enter Width

2. Ask the user to enter Height

3. Calculate Area

4. Display Area for the user

The reason for considering Solution B as a bad solution:

• Step 3 is not clear because it does not explain how we can calculate
Area.

• So, this algorithm is bad because its steps are not obvious.

Example 20.1

Area of a Rectangle Calculator
Solution C

15

Solution C - Bad:
1. Set Area to (Width × Height)

2. Ask the user to enter Width

3. Ask the user to enter Height

4. Display Area for the user

The reasons for considering Solution C as a bad solution:

• We don't know what Width and Height at the Step 1 are. In other words, Width and
Height have not been defined before Step 1, so we cannot use them because they do
not exist yet.

• What about Step 2 and Step 3? Width and Height are defined there!. After Step 2,
Width does exist, but Height does not. After Step 3, Height does exist. Both Width and
Height are available to be used at or after step 4.

• So, this algorithm is bad because its steps are not correctly sequential.

Example 20.1

Area of a Rectangle Calculator
Solution D

16

Solution D - Bad:
1. Set Area to (Width × Height)

2. Display Area for the user

The reasons for considering Solution D as a bad solution:

• Step 1 tells us to multiply Width and Height, but we don't know
what Width and Height are. Even, they have not been defined in any
steps of the algorithm.

• So, this algorithm is bad because of the illogical step, which is using
unknown things (Width and Height).

Example 20.1

Area of a Rectangle Calculator
Solution E

17

Solution E - Bad:
1. Ask the user to enter Width

2. Ask the user to enter Height

3. Set Area to (Width × Height × 2)

4. Display Area for the user

The reasons for considering Solution E as a bad solution:

• This algorithm will give us a wrong value of the Area. For example, suppose that the
user entered 4 for Width and 5 for Height. The correct value of the Area should be 20,
but this algorithm will display 40 as the value of the Area.

• The reason for giving the wrong value is how Step 3 calculates the Area. Step 3
calculates the Area by the incorrect equation (Width × Height × 2) instead of (Width ×
Height).

• So, this algorithm is bad because it has a logical problem, which is producing incorrect
output (the value of the Area).

Example 20.1

0.2. Program Design &
Problem-Solving Techniques

18

▪ How Do We Write a Program?

▪ Problem-Solving Phase

▪ Implementation Phase

https://youtu.be/YfRWCmf1r9A

How Do We Write a Program?

19

• A Computer is not intelligent.
◦ It cannot analyze a problem and come up with a solution.

◦ A human (the programmer) must analyze the problem, develop the
instructions for solving the problem, and then have the computer carry out
the instructions.

• To write a program for a computer to follow, we must go through a
two-phase process: problem solving and implementation.

0.2

Problem-Solving Phase

20

1. Analysis and Specification - Understand (define) the problem and
what the solution must do.

2. General Solution (Algorithm) - Specify the required data types and
the logical sequences of steps that solve the problem.

3. Verify - Follow the steps exactly to see if the solution really does
solve the problem.

0.2

Implementation Phase

21

• Concrete Solution (Program) - Translate the algorithm (the general
solution) into a programming language.

• Test - Have the computer follow the instructions.
◦ Then manually check the results.

◦ If you find errors, analyze the program and the algorithm to determine the
source of the errors, and then make corrections.

• Once a program is tested, it enters into next phase (Maintenance).

• Maintenance requires modification of the program to meet
changing requirements or to correct any errors that show up while
using it.

0.2

0.3. Steps in Program Development

22

▪ Example 3: Simple Calculator

https://youtu.be/YfRWCmf1r9A?t=602

Steps in Program Development

23

1. Define the problem into three separate components:

• Inputs

• Processing steps to produce required outputs.

• Outputs

0.3

Steps in Program Development

24

2. Outline the solution.

• Decompose the problem to smaller steps.

• Establish a solution outline.

3. Develop the outline into an algorithm.

• The solution outline is now expanded into an algorithm.

0.3

Steps in Program Development

25

4. Test the algorithm for correctness.

• Very important in the development of a program, but often
forgotten.

• Major logic errors can be detected and corrected at an early stage.

5. Code the algorithm into a specific programming language.

0.3

Steps in Program Development

26

6. Run the program on the computer.

• This step uses a program compiler or interpreter, and
programmer-designed test data to machine-test the code for

• Syntax errors
• Runtime errors

• Logic errors

7. Document and maintain the program.

0.3

Simple Calculator
Example 3

27

Suppose that you are asked to write a calculator program
that can sum and subtract two integer numbers. Write the
program requirements, specifications and algorithm.

Example 30.3

Simple Calculator
The Requirements

28

Suppose that you are asked to write a calculator program that can sum
and subtract two integer numbers. Write the program requirements,
specifications and algorithm.

The requirements:
◦ The user can enter an equation which consists of two numbers and a sign (- or

+).

◦ The program should calculate the equation correctly and display the result for
the user.

◦ The program can sum and subtract two integer numbers.

Example 30.3

Simple Calculator
The Specifications

29

Suppose that you are asked to write a calculator program that can sum
and subtract two integer numbers. Write the program requirements,
specifications and algorithm.

The specifications:
◦ When the program runs, it will display a welcome message that says, 'Welcome

to our Calculator".

◦ The program will then ask the user to enter the first number.

◦ The program will then ask the user to enter the second number.

◦ The program will then ask the user to select the sign (calculation operators)
from this set (-,+).

◦ The program will then display the correct result of the calculation on the screen
and end.

Example 30.3

Simple Calculator
Designing a Solution

30

• After the steps of identifying the problem (the requirements and
specifications), we should have a clear idea about what is going
exactly to be achieved and solved.

• In this step, we are going to describe how the specifications can be
achieved.

• This means that we need to design an algorithm that fulfills the
specifications.

• We can design the algorithm via written steps or visualized steps
using, for example, flowcharts.

• In the written steps, we can use simple sentences in English or some
special notations and structures in something called "Pseudocode".

Example 30.3

Simple Calculator
The Algorithm

31

Suppose that you are asked to write a calculator program that can sum
and subtract two integer numbers. Write the program requirements,
specifications and algorithm.

The algorithm:
1. Display a welcome message that says, “Welcome to our Calculator".

2. Ask the user to enter the first number and save it to X.

3. Ask the user to enter the second number and save it to Y.

4. Ask the user to select the sign (-,+) and save it in Sign.

5. if Sign is equal to “+”, make Sum = X + Y

6. Otherwise, make Sum = X - Y

7. Display Sum

Example 30.3

Simple Calculator
The Pseudocode and Flowchart

32

Suppose that you are asked to write a calculator program that can sum
and subtract two integer numbers. Write the program requirements,
specifications and algorithm.

The algorithm (pseudocode and flowchart):
1. print “Welcome to our Calculator”

2. X = input “Enter the first number:“

3. Y = input “Enter the second number:”

4. Sign = input "Select – or +"

5. if Sign is equal to "+" then:

6. Sum = X + Y

7. else:

8. Sum = X – Y

9. End if

10. print Sum

Example 30.3

33Example 30.3

Simple Calculator
Verifying The Algorithm

34

1. Display a welcome message that says, “Welcome to our Calculator".

2. Ask the user to enter the first number and save it to X.

3. Ask the user to enter the second number and save it to Y.

4. Ask the user to select the sign (-,+) and save it in Sign.

5. if Sign is equal to “+”, make Sum = X + Y

6. Otherwise, make Sum = X - Y

7. Display Sum

The Algorithm The User

“Welcome to our Calculator”

Test 1

1 of 70.3 Example 3

Simple Calculator
Verifying The Algorithm

35

1. Display a welcome message that says, “Welcome to our Calculator".

2. Ask the user to enter the first number and save it to X.

3. Ask the user to enter the second number and save it to Y.

4. Ask the user to select the sign (-,+) and save it in Sign.

5. if Sign is equal to “+”, make Sum = X + Y

6. Otherwise, make Sum = X - Y

7. Display Sum

The Algorithm The User

Test 1

X = 20

Please enter the first number

2 of 70.3 Example 3

Simple Calculator
Verifying The Algorithm

36

1. Display a welcome message that says, “Welcome to our Calculator".

2. Ask the user to enter the first number and save it to X.

3. Ask the user to enter the second number and save it to Y.

4. Ask the user to select the sign (-,+) and save it in Sign.

5. if Sign is equal to “+”, make Sum = X + Y

6. Otherwise, make Sum = X - Y

7. Display Sum

The Algorithm The User

Test 1

Y = 10

Please enter the second number
x = 20

3 of 70.3 Example 3

Simple Calculator
Verifying The Algorithm

37

1. Display a welcome message that says, “Welcome to our Calculator".

2. Ask the user to enter the first number and save it to X.

3. Ask the user to enter the second number and save it to Y.

4. Ask the user to select the sign (-,+) and save it in Sign.

5. if Sign is equal to “+”, make Sum = X + Y

6. Otherwise, make Sum = X - Y

7. Display Sum

The Algorithm The User

Test 1

Sign = +

Please select – or +
x = 20
Y = 10

4 of 70.3 Example 3

Simple Calculator
Verifying The Algorithm

38

1. Display a welcome message that says, “Welcome to our Calculator".

2. Ask the user to enter the first number and save it to X.

3. Ask the user to enter the second number and save it to Y.

4. Ask the user to select the sign (-,+) and save it in Sign.

5. if Sign is equal to “+”, make Sum = X + Y

6. Otherwise, make Sum = X - Y

7. Display Sum

The Algorithm The User

Test 1

x = 20
Y = 10
Sign = +

Is Sign equal to “+”? Yes

5 of 70.3 Example 3

Simple Calculator
Verifying The Algorithm

39

1. Display a welcome message that says, “Welcome to our Calculator".

2. Ask the user to enter the first number and save it to X.

3. Ask the user to enter the second number and save it to Y.

4. Ask the user to select the sign (-,+) and save it in Sign.

5. if Sign is equal to “+”, make Sum = X + Y

6. Otherwise, make Sum = X - Y

7. Display Sum

The Algorithm The User

Test 1

x = 20
Y = 10
Sign = +

Sum = X + Y = 20 + 10 = 30

6 of 70.3 Example 3

Simple Calculator
Verifying The Algorithm

40

1. Display a welcome message that says, “Welcome to our Calculator".

2. Ask the user to enter the first number and save it to X.

3. Ask the user to enter the second number and save it to Y.

4. Ask the user to select the sign (-,+) and save it in Sign.

5. if Sign is equal to “+”, make Sum = X + Y

6. Otherwise, make Sum = X - Y

7. Display Sum

The Algorithm The User

Test 1

x = 20
Y = 10
Sign = +
Sum = 30

30

7 of 70.3 Example 3

Output:
30

Simple Calculator
Verifying The Algorithm

41

1. Display a welcome message that says, “Welcome to our Calculator".

2. Ask the user to enter the first number and save it to X.

3. Ask the user to enter the second number and save it to Y.

4. Ask the user to select the sign (-,+) and save it in Sign.

5. if Sign is equal to “+”, make Sum = X + Y

6. Otherwise, make Sum = X - Y

7. Display Sum

The Algorithm The User

“Welcome to our Calculator”

Test 2

1 of 70.3 Example 3

Simple Calculator
Verifying The Algorithm

42

1. Display a welcome message that says, “Welcome to our Calculator".

2. Ask the user to enter the first number and save it to X.

3. Ask the user to enter the second number and save it to Y.

4. Ask the user to select the sign (-,+) and save it in Sign.

5. if Sign is equal to “+”, make Sum = X + Y

6. Otherwise, make Sum = X - Y

7. Display Sum

The Algorithm The User

X = 50

Please enter the first number

Test 2

2 of 70.3 Example 3

Simple Calculator
Verifying The Algorithm

43

1. Display a welcome message that says, “Welcome to our Calculator".

2. Ask the user to enter the first number and save it to X.

3. Ask the user to enter the second number and save it to Y.

4. Ask the user to select the sign (-,+) and save it in Sign.

5. if Sign is equal to “+”, make Sum = X + Y

6. Otherwise, make Sum = X - Y

7. Display Sum

The Algorithm The User

Y = 15

Please enter the second number
x = 50

Test 2

3 of 70.3 Example 3

Simple Calculator
Verifying The Algorithm

44

1. Display a welcome message that says, “Welcome to our Calculator".

2. Ask the user to enter the first number and save it to X.

3. Ask the user to enter the second number and save it to Y.

4. Ask the user to select the sign (-,+) and save it in Sign.

5. if Sign is equal to “+”, make Sum = X + Y

6. Otherwise, make Sum = X - Y

7. Display Sum

The Algorithm The User

Sign = -

Please select - or +
x = 50
Y = 15

Test 2

4 of 70.3 Example 3

Simple Calculator
Verifying The Algorithm

45

1. Display a welcome message that says, “Welcome to our Calculator".

2. Ask the user to enter the first number and save it to X.

3. Ask the user to enter the second number and save it to Y.

4. Ask the user to select the sign (-,+) and save it in Sign.

5. if Sign is equal to “+”, make Sum = X + Y

6. Otherwise, make Sum = X - Y

7. Display Sum

The Algorithm The User

x = 50
Y = 15
Sign = -

Is Sign equal to “+”? No

Test 2

5 of 70.3 Example 3

Simple Calculator
Verifying The Algorithm

46

1. Display a welcome message that says, “Welcome to our Calculator".

2. Ask the user to enter the first number and save it to X.

3. Ask the user to enter the second number and save it to Y.

4. Ask the user to select the sign (-,+) and save it in Sign.

5. if Sign is equal to “+”, make Sum = X + Y

6. Otherwise, make Sum = X - Y

7. Display Sum

The Algorithm The User

x = 50
Y = 15
Sign = -

Sum = X - Y = 50 - 15 = 35

Test 2

6 of 70.3 Example 3

Simple Calculator
Verifying The Algorithm

47

1. Display a welcome message that says, “Welcome to our Calculator".

2. Ask the user to enter the first number and save it to X.

3. Ask the user to enter the second number and save it to Y.

4. Ask the user to select the sign (-,+) and save it in Sign.

5. if Sign is equal to “+”, make Sum = X + Y

6. Otherwise, make Sum = X - Y

7. Display Sum

The Algorithm The User

x = 50
Y = 15
Sign = -
Sum = 35

35

Test 2

7 of 70.3 Example 3

Output:
35

0.4. Algorithms, Pseudocode, &
Flowcharts

48

▪ Example 4: Determining a Student’s Final Grade

▪ Flowcharts

▪ Flowchart Symbols

▪ Example 5: Converting The Length

▪ Example 6: Area of a Rectangle Calculator

https://youtu.be/gVpGg29Tx7A

Algorithm, Pseudocode, & Flowcharts

49

• What is an algorithm?
◦ A step-by-step series of instructions in order to perform a specific

task.

◦ An algorithm must:
▪ Be lucid (clear), precise and unambiguous.

▪ Give the correct solution in all cases, and eventually end.

• What is pseudocode?
◦ It is English that looks similar to code
▪ But it is not actual code (only looks a little similar) .

▪ Think of pseudocode as a way of expressing your algorithm.

• What is a flowchart?
◦ A graphical representation of the sequence of operations in an

information system or program.

0.4

Algorithm, Pseudocode, & Flowcharts

50

• For Clarity:
◦ An algorithm is a series of steps you take to solve a problem, just

like a recipe is a series of steps you take to make a food!

◦ Now, we express our algorithms in many ways:
▪ Pseudocode: this is not “real code”, but a slightly more formal way of writing

the algorithmic steps

▪ As an example, maybe the programmer does not know the language he/she
will use. Therefore, they just write pseudocode during Problem-Solving
Phase.

▪ Flowchart: this is a graphical representation of the algorithm

▪ Actual code: this is during the Implementation Phase

▪ Python, Java, C++, C, etc

0.4

Determining a Student’s Final Grade
Example 4

51

Write an algorithm and pseudocode to determine a
student’s final grade and indicate whether it is passing or
failing. The final grade is calculated as the average of four
marks.

Example 40.4

Determining a Student’s Final Grade
Algorithm

52

Write an algorithm and pseudocode to determine a student’s final
grade and indicate whether it is passing or failing. The final grade is
calculated as the average of four marks.

Algorithm:
1. Ask the user to enter 4 marks (Mark1, Mark2, Mark3, Mark4)

2. Calculate the marks average (Avg) by summing marks and it dividing by 4

3. If average (Avg) is greater than or equal 60

4. Print “Pass”

5. Else

6. Print “Fail”

7. End if

Example 40.4

Determining a Student’s Final Grade
Pseudocode

53

Write an algorithm and pseudocode to determine a student’s final
grade and indicate whether it is passing or failing. The final grade is
calculated as the average of four marks.

Pseudocode:
1. input Mark1, Mark2, Mark3, Mark4

2. Avg = (Mark1 + Mark2 + Mark3 + Mark4) / 4

3. if Avg >= 60:

4. print “Pass”

5. else:

6. print “Fail”

7. End if

Example 40.4

Determining a Student’s Final Grade
Verifying The Algorithm

54

1. input Mark1, Mark2, Mark3, Mark4

2. Avg = (Mark1 + Mark2 + Mark3 + Mark4) / 4

3. if Avg >= 60:

4. print “Pass”

5. else:

6. print “Fail”

7. End if

The Algorithm The User

Mark1 = 80, Mark2 = 90, Mark3 = 95, Mark4 = 85

I am waiting you to give me 4 marks

Test 1

1 of 50.4 Example 4

Determining a Student’s Final Grade
Verifying The Algorithm

55

1. input Mark1, Mark2, Mark3, Mark4

2. Avg = (Mark1 + Mark2 + Mark3 + Mark4) / 4

3. if Avg >= 60:

4. print “Pass”

5. else:

6. print “Fail”

7. End if

The Algorithm The User

Mark1 = 80, Mark2 = 90, Mark3 = 95, Mark4 = 85

Avg = (80 + 90 + 95 + 85) / 4 = 350 / 4 = 87.5

Test 1

2 of 50.4 Example 4

Determining a Student’s Final Grade
Verifying The Algorithm

56

1. input Mark1, Mark2, Mark3, Mark4

2. Avg = (Mark1 + Mark2 + Mark3 + Mark4) / 4

3. if Avg >= 60:

4. print “Pass”

5. else:

6. print “Fail”

7. End if

The Algorithm The User

Mark1 = 80, Mark2 = 90, Mark3 = 95, Mark4 = 85

Avg = 87.5

Avg >= 60 = 87.5 >= 60 = Yes

Test 1

3 of 50.4 Example 4

Determining a Student’s Final Grade
Verifying The Algorithm

57

1. input Mark1, Mark2, Mark3, Mark4

2. Avg = (Mark1 + Mark2 + Mark3 + Mark4) / 4

3. if Avg >= 60:

4. print “Pass”

5. else:

6. print “Fail”

7. End if

The Algorithm The User

Mark1 = 80, Mark2 = 90, Mark3 = 95, Mark4 = 85

Avg = 87.5
“Pass”

Test 1

4 of 50.4 Example 4

Output:
Pass

Determining a Student’s Final Grade
Verifying The Algorithm

58

1. input Mark1, Mark2, Mark3, Mark4

2. Avg = (Mark1 + Mark2 + Mark3 + Mark4) / 4

3. if Avg >= 60:

4. print “Pass”

5. else:

6. print “Fail”

7. End if

The Algorithm The User

Mark1 = 80, Mark2 = 90, Mark3 = 95, Mark4 = 85

Avg = 87.5

Test 1

5 of 50.4 Example 4

Output:
Pass

Determining a Student’s Final Grade
Verifying The Algorithm

59

1. input Mark1, Mark2, Mark3, Mark4

2. Avg = (Mark1 + Mark2 + Mark3 + Mark4) / 4

3. if Avg >= 60:

4. print “Pass”

5. else:

6. print “Fail”

7. End if

The Algorithm The User

Mark1 = 42, Mark2 = 55, Mark3 = 60, Mark4 = 37

I am waiting you to give me 4 marks

Test 2

1 of 60.4 Example 4

Determining a Student’s Final Grade
Verifying The Algorithm

60

1. input Mark1, Mark2, Mark3, Mark4

2. Avg = (Mark1 + Mark2 + Mark3 + Mark4) / 4

3. if Avg >= 60:

4. print “Pass”

5. else:

6. print “Fail”

7. End if

The Algorithm The User

Mark1 = 42, Mark2 = 55, Mark3 = 60, Mark4 = 37

Avg = (42 + 55 + 60 + 37) / 4 = 194 / 4 = 48.5

Test 2

2 of 60.4 Example 4

Determining a Student’s Final Grade
Verifying The Algorithm

61

1. input Mark1, Mark2, Mark3, Mark4

2. Avg = (Mark1 + Mark2 + Mark3 + Mark4) / 4

3. if Avg >= 60:

4. print “Pass”

5. else:

6. print “Fail”

7. End if

The Algorithm The User

Mark1 = 42, Mark2 = 55, Mark3 = 60, Mark4 = 37

Avg = 48.5

Avg >= 60 = 48.5 >= 60 = No

Test 2

3 of 60.4 Example 4

Determining a Student’s Final Grade
Verifying The Algorithm

62

1. input Mark1, Mark2, Mark3, Mark4

2. Avg = (Mark1 + Mark2 + Mark3 + Mark4) / 4

3. if Avg >= 60:

4. print “Pass”

5. else:

6. print “Fail”

7. End if

The Algorithm The User

Mark1 = 42, Mark2 = 55, Mark3 = 60, Mark4 = 37

Avg = 48.5

Test 2

4 of 60.4 Example 4

Determining a Student’s Final Grade
Verifying The Algorithm

63

1. input Mark1, Mark2, Mark3, Mark4

2. Avg = (Mark1 + Mark2 + Mark3 + Mark4) / 4

3. if Avg >= 60:

4. print “Pass”

5. else:

6. print “Fail”

7. End if

The Algorithm The User

Mark1 = 42, Mark2 = 55, Mark3 = 60, Mark4 = 37

Avg = 48.5
“Fail”

Test 2

5 of 60.4 Example 4

Output:
Fail

Determining a Student’s Final Grade
Verifying The Algorithm

64

1. input Mark1, Mark2, Mark3, Mark4

2. Avg = (Mark1 + Mark2 + Mark3 + Mark4) / 4

3. if Avg >= 60:

4. print “Pass”

5. else:

6. print “Fail”

7. End if

The Algorithm The User

Mark1 = 42, Mark2 = 55, Mark3 = 60, Mark4 = 37

Avg = 48.5

Test 2

6 of 60.4 Example 4

Output:
Fail

Flowchart

65

• A graphical representation of the sequence of operations
in an information system or program.

• Program flowcharts show the sequence of instructions in a
single program or subroutine.

◦ show logic of an algorithm

◦ emphasize individual steps and their interconnections

◦ e.g. control flow from one action to the next

• Different symbols are used to draw each type of flowchart.

0.4

Flowchart Symbols

66

Name Symbol Use in Flowchart

Denotes the beginning or end of the program.

Denotes an input / output operations.

Denotes a process to be carried out.

For example: addition, subtraction, and division.

Denotes a decision or branch to be made The program

should continue along one of two routes (Ex. If/Then/Else)

Denotes the direction of logic flow in the program

Oval

Parallelogram

Rectangle

Diamond

Flow line

0.4

Flowcharts

67

• Are flowcharts really necessary or helpful?

◦ In the real world, programs are not only 1000 lines.

◦ Programs are hundreds of thousands of lines of code.
▪ Even Millions of lines of code.

◦ Could you use only English to describe your program?
▪ Sure you could, but you would end up with a book!

◦ Therefore, think of flowcharts as an easier, clearer way to
quickly understand what a program is doing.

0.4

Flowcharts

68

• Are flowcharts really necessary or helpful?

◦ So in summary, yes, they are helpful.

• That said, most of the programs we show you over the
next few weeks are smaller programs.

◦ Do you really need a flowchart for a small program?

◦ Probably not.

◦ However, students should get into the habit of making flowcharts
with smaller, easier programs.

◦ Then, it will be easy to do for larger programs.

0.4

Converting The Length
Example 5

69

Write an Algorithm, Pseudocode, and draw a flowchart to
convert the length in feet to centimeter.

Algorithm:
1. Input the length in feet (LFT)

2. Calculate the length in cm (LCM) by multiplying LFT with 30

3. Print length in cm (LCM)

Example 50.4

Converting The Length
The Algorithm

70

Pseudocode:
1. LFT = input “Length in feet”

2. LCM = LFT x 30

3. print LCM

Flowchart:

Start

input

LFT

LCM = LFT x 30

output

LCM

End

Example 50.4

Converting The Length
Verifying The Algorithm

71

Start

input

LFT

LCM = LFT x 30

output

LCM

End

Test 1

The Algorithm

The User

1 of 50.4 Example 5

Converting The Length
Verifying The Algorithm

72

Start

input

LFT = 15

LCM = LFT x 30

output

LCM

End

Test 1

The Algorithm

The User

2 of 50.4 Example 5

Converting The Length
Verifying The Algorithm

73

Start

input

LFT = 15

LCM = LFT x 30

= 15 x 30 = 450

output

LCM

End

Test 1

The Algorithm

The User

3 of 50.4 Example 5

Converting The Length
Verifying The Algorithm

74

Start

input

LFT = 15

LCM = 450

output

LCM

= 450

End

Test 1

The Algorithm

The User

4 of 50.4 Example 5

Output:
450

Converting The Length
Verifying The Algorithm

75

Start

input

LFT = 15

LCM = 450

output

LCM

= 450

End

Test 1

The Algorithm

The User

5 of 50.4 Example 5

Output:
450

Area of a Rectangle Calculator
Example 6

76

Write an Algorithm, Pseudocode, and draw a flowchart that
will read the two sides of a rectangle and calculate its area.

Algorithm:
1. Input the Length (L) and width (W) of a rectangle

2. Calculate the area (A) by multiplying L with W

3. Print A

Example 60.4

Area of a Rectangle Calculator
The Algorithm

77

Pseudocode:
1. input L, W

2. A = L x W

3. print A

Flowchart:

input
L , W

A = L x W

output
A

Start

End

Example 60.4

0.5. Decision Structures

78

▪ If–then–else Structure

▪ Relational Operators

▪ Example 7: Determining The Largest Value

https://youtu.be/gVpGg29Tx7A?t=1560

Decision Structures

79

• The expression A > B is a logical expression

• It describes a condition we want to test

• if A > B is true (if A is greater than B)
we take the action on left: print the value of A

• if A > B is false (if A is not greater than B)
we take the action on right: print the value of B

• Note: Print = Output

0.5

If–then–else Structure

80

• The structure is as follows

if condition then

true alternative

else

false alternative

End if

0.5

If–then–else Structure

81

• The algorithm for the flowchart is as follows:

if A > B then

print A

else

print B

End if

0.5

Relational Operators

82

Relational Operators

Operator Description

> Greater than

< Less than

== Equal to

 Or >= Greater than or equal to

 Or <= Less than or equal to

 Or != Not equal to

0.5

Determining The Largest Value
Example 7

83

Write a Pseudocode that reads two values, determines the
largest value and prints the largest value with an identifying
message.

Pseudocode:
1. Input VALUE1, VALUE2
2. if (VALUE1 > VALUE2) then
3. MAX = VALUE1
4. else
5. MAX = VALUE2
6. endif
7. print “The largest value is”, MAX

print

“The largest value is”, MAX

End

Yes

Start

input

VALUE1, VALUE2

MAX = VALUE2

is

VALUE1 > VALUE2

MAX = VALUE1

No

Example 70.5

Determining The Largest Value
The Algorithm

84

print

“The largest value is”, MAX

End

Yes

Start

input

VALUE1, VALUE2

MAX = VALUE2

is
VALUE1 > VALUE2

MAX = VALUE1

No

Example 70.5

Determining The Largest Value
Verifying The Algorithm

85

Test 1

The Algorithm

print

“The largest value is”, MAX

End

Yes

Start

input

VALUE1, VALUE2

MAX = VALUE2

is
VALUE1 > VALUE2

MAX = VALUE1

No

The User

1 of 60.5 Example 7

Determining The Largest Value
Verifying The Algorithm

86

Test 1

The Algorithm

The User

print

“The largest value is”, MAX

End

Yes

Start

input

VALUE1, VALUE2

MAX = VALUE2

is
VALUE1 > VALUE2

MAX = VALUE1

No

2 of 60.5 Example 7

Determining The Largest Value
Verifying The Algorithm

87

Test 1

The Algorithm

The User

print

“The largest value is”, MAX

End

Yes

Start

input

VALUE1 = 3, VALUE2 = 5

MAX = VALUE2

is
VALUE1 > VALUE2

MAX = VALUE1

No

3 of 60.5 Example 7

Determining The Largest Value
Verifying The Algorithm

88

Test 1

The Algorithm

The User

print

“The largest value is”, MAX

End

Yes

Start

input

VALUE1 = 3, VALUE2 = 5

MAX = VALUE2

= 5

is
VALUE1 > VALUE2

MAX = VALUE1

No

4 of 60.5 Example 7

Determining The Largest Value
Verifying The Algorithm

89

Test 1

The Algorithm

The User

print

“The largest value is”, MAX

= “The largest value is 5”

End

Yes

Start

input

VALUE1 = 3, VALUE2 = 5

MAX = VALUE2

= 5

is
VALUE1 > VALUE2

MAX = VALUE1

No

5 of 60.5 Example 7

Output:
The largest value is 5

Determining The Largest Value
Verifying The Algorithm

90

Test 1

The Algorithm

The User

print

“The largest value is”, MAX

= “The largest value is 5”

End

Yes

Start

input

VALUE1 = 3, VALUE2 = 5

MAX = VALUE2

= 5

is
VALUE1 > VALUE2

MAX = VALUE1

No

6 of 60.5 Example 7

Output:
The largest value is 5

Determining The Largest Value
Verifying The Algorithm

91

1. Input VALUE1, VALUE2

2. if (VALUE1 > VALUE2) then

3. MAX = VALUE1

4. else

5. MAX = VALUE2

6. endif

7. print “The largest value is”, MAX

Test 2

1 of 70.5 Example 7

Determining The Largest Value
Verifying The Algorithm

92

1. Input VALUE1, VALUE2

2. if (VALUE1 > VALUE2) then

3. MAX = VALUE1

4. else

5. MAX = VALUE2

6. endif

7. print “The largest value is”, MAX

Test 2

2 of 70.5 Example 7

Determining The Largest Value
Verifying The Algorithm

93

1. Input VALUE1, VALUE2

2. if (VALUE1 > VALUE2) then

3. MAX = VALUE1

4. else

5. MAX = VALUE2

6. endif

7. print “The largest value is”, MAX

Test 2

3 of 70.5 Example 7

Determining The Largest Value
Verifying The Algorithm

94

1. Input VALUE1, VALUE2

2. if (VALUE1 > VALUE2) then

3. MAX = VALUE1

4. else

5. MAX = VALUE2

6. endif

7. print “The largest value is”, MAX

Test 2

4 of 70.5 Example 7

Determining The Largest Value
Verifying The Algorithm

95

1. Input VALUE1, VALUE2

2. if (VALUE1 > VALUE2) then

3. MAX = VALUE1

4. else

5. MAX = VALUE2

6. endif

7. print “The largest value is”, MAX

Test 2

5 of 70.5 Example 7

Determining The Largest Value
Verifying The Algorithm

96

1. Input VALUE1, VALUE2

2. if (VALUE1 > VALUE2) then

3. MAX = VALUE1

4. else

5. MAX = VALUE2

6. endif

7. print “The largest value is”, MAX

Test 2

6 of 70.5 Example 7

Determining The Largest Value
Verifying The Algorithm

97

1. Input VALUE1, VALUE2

2. if (VALUE1 > VALUE2) then

3. MAX = VALUE1

4. else

5. MAX = VALUE2

6. endif

7. print “The largest value is”, MAX

Test 2

7 of 70.5 Example 7

Determining The Largest Value
Python Code

98Example 70.5

Example7.py

value1 = eval(input("Enter Value 1: "))

value2 = eval(input("Enter Value 2: "))

if value1 > value2:

largest = value1

else:

largest = value2

print("The largest value is", largest)

1

2

3

4

5

6

7

8

9

Run

https://repl.it/@AhmadTayebKAU/CPIT110Chapter0Example7#main.py

End

99

▪ Play & Learn

Play & Learn

100

• Be familiar with basic logic and problem-solving techniques through
practicing at Code.org.

• Visit https://studio.code.org/hoc/1 and play.

https://studio.code.org/hoc/1

Play & Learn

101

• Note: You can select “Arabic” from the menu at the bottom.

