
Chapter 1
Introduction to Computers,
Programs, and Python
CPIT 110 (Problem-Solving and Programming)

Version 2.0

Introduction to Programming Using Python, By: Y. Daniel Liang

Sections

2

• 1.2. What is a Computer?

• 1.3. Programming Languages

• 1.4. Operating Systems

• 1.5. The History of Python

• 1.6. Getting Started with Python

• A Simple Python Program

• Simple Examples

• Anatomy of a Python Program

• 1.7. Programming Style and Documentation

• 1.8. Programming Errors

Programs Check Points Labs

https://youtu.be/WGhZL-3yriE
https://youtu.be/WGhZL-3yriE?t=1203
https://youtu.be/w3G-aw1-n-U
https://youtu.be/2u9q-WTmLOo
https://youtu.be/c4gWVkMQhzQ
https://youtu.be/5MtOy9nQXJ4
https://youtu.be/rzdwSDtbi5M
https://youtu.be/tmItuK4X-00
https://youtu.be/ZXe-VQujdG8
https://youtu.be/oJuV4S3U7j0

Programs

3

• Program 1: Welcome with Two Messages

• Program 2: Welcome With Three Messages

• Program 3: Compute an Expression

Python Online IDE

https://repl.it/languages/python3

Check Points

• Simple Examples
◦ #1

◦ #2

• Section 1.8
◦ #3

4

Objectives

5

• To understand computer basics, programs, and operating systems
(1.2-1.4).

• To write and run a simple Python program (1.5).

• To explain the basic syntax of a Python program (1.5).

• To describe the history of Python (1.6).

• To explain the importance of, and provide examples of, proper
programming style and documentation (1.7).

• To explain the differences between syntax errors, runtime errors,
and logic errors (1.8).

Textbook

6

Introduction to Programming Using Python, By: Y. Daniel Liang

https://www.amazon.com/Introduction-Programming-Using-Python-Daniel/dp/0132747189

1.2. What is a Computer?

7

▪ CPU

▪ Memory

▪ Storage Devices

▪ Output Devices

▪ Input Devices

https://youtu.be/oJuV4S3U7j0

What is a Computer?

8

• A computer is an electronic device that stores and processes data.

• A computer includes both hardware and software.

• In general, hardware comprises the visible, physical elements of the
computer, and software provides the invisible instructions that
control the hardware and make it perform specific tasks.

• A computer consists of: CPU, memory, storage devices (such as disks
and CDs), input devices (such as the mouse and keyboard), output
devices (such as monitors and printers), and communication devices
(such as modems and network interface cards).

1.2

What is a Computer?

9

• A computer’s components are interconnected by a subsystem called
a bus.

• You can think of a bus as a sort of system of roads running among
the computer’s components; data and power travel along the bus
from one part of the computer to another.

• In personal computers, the bus is built into the computer’s
motherboard, which is a circuit case that connects all of the parts of
a computer together.

CPU

e.g., Disk, CD,

and Tape

Input

Devices

e.g., Keyboard,

Mouse

e.g., Monitor,

Printer

Communication

Devices

e.g., Modem,

and NIC

Storage

Devices

Memory
Output

Devices

Bus

1.2

A computer consists of

101.2

CPU

11

• The central processing unit (CPU) is the brain of a computer.

• It retrieves instructions from memory and executes them.

• The CPU speed is measured in megahertz (MHz).

• 1 megahertz equaling 1 million pulses per second.

CPU

e.g., Disk, CD,

and Tape

Input

Devices

e.g., Keyboard,

Mouse

e.g., Monitor,

Printer

Communication

Devices

e.g., Modem,

and NIC

Storage

Devices

Memory
Output

Devices

Bus

CPU

1.2

CPU

121.2

Memory

13

• Memory is to store data and program instructions for CPU to
execute.

• A memory unit is an ordered sequence of bytes, each holds eight
bits. (a bit = 0 or 1)

• A program and its data must be brought to memory before they can
be executed.

• The current content of a memory byte is lost whenever new
information is placed in it.

CPU

e.g., Disk, CD,

and Tape

Input

Devices

e.g., Keyboard,

Mouse

e.g., Monitor,

Printer

Communication

Devices

e.g., Modem,

and NIC

Storage

Devices

Memory
Output

Devices

Bus

Memory

1.2

Memory

141.2

Storage Devices

15

• Memory is volatile, because information is lost when the power is
off.

• Programs and data are permanently stored on storage devices and
are moved to memory when the computer actually uses them.

• There are three main types of storage devices: Disk drives (hard
disks and floppy disks), CD drives (CD-R and CD-RW), and Tape drives
(magnetic tape).

CPU

e.g., Disk, CD,

and Tape

Input

Devices

e.g., Keyboard,

Mouse

e.g., Monitor,

Printer

Communication

Devices

e.g., Modem,

and NIC

Storage

Devices

Memory
Output

Devices

Bus

Storage

Devices

1.2

Storage Devices

161.2

Output Devices

17

• An output device is any device used to send data from a computer
to another device or user.

• Most computer data output that is meant for humans is in the form
of audio or video such as monitors.

• The monitor displays information (text and graphics).

• The resolution and dot pitch determine the quality of the display.

CPU

e.g., Disk, CD,

and Tape

Input

Devices

e.g., Keyboard,

Mouse

e.g., Monitor,

Printer

Communication

Devices

e.g., Modem,

and NIC

Storage

Devices

Memory
Output

Devices

Bus

Output

Devices

1.2

Output Devices

181.2

Input Devices

19

• An input device is any hardware device that sends data to a
computer.

• Input and output devices let the user communicate with the
computer.

• The most common input devices are keyboards and mice.

CPU

e.g., Disk, CD,

and Tape

Input

Devices

e.g., Keyboard,

Mouse

e.g., Monitor,

Printer

Communication

Devices

e.g., Modem,

and NIC

Storage

Devices

Memory
Output

Devices

Bus

1.2

Input Devices

201.2

1.3. Programming Languages

21

▪ Programs

▪ Machine Language

▪ Assembly Language

▪ High-Level Language

▪ Popular High-Level Languages

▪ Interpreting/Compiling Source Code

▪ Interpreting Source Code

▪ Compiling Source Code

https://youtu.be/WGhZL-3yriE

Programs

22

• Computer programs, known as software, are instructions to the
computer.

• You tell a computer what to do through programs.

• Without programs, a computer is an empty machine.

• Computers do not understand human languages, so you need to use
computer languages to communicate with them.

• Programs are written using programming languages.

1.3

Programming Languages

23

Machine Language Assembly Language High-Level Language

• Machine language is a set of primitive instructions built into every
computer.

• The instructions are in the form of binary code, so you have to enter
binary codes for various instructions.

• Program with native machine language is a tedious process.

• Moreover the programs are highly difficult to read and modify.

• For example, to add two numbers, you might write an instruction in
binary like this:

1101101010011010

1.3

Programming Languages

24

Machine Language Assembly Language High-Level Language

• Assembly languages were developed to make programming easy.

• Since the computer cannot understand assembly language,
however, a program called assembler is used to convert assembly
language programs into machine code.

• Writing code in assembly language is easier than in machine
language. However, it is still tedious to write code in assembly
language.

• For example, to add two numbers, you might write an instruction in
assembly code like this:

ADD 2, 3, result

1.3

Programming Languages

25

Machine Language Assembly Language High-Level Language

• The high-level languages are English-like and easy to learn and
program.

• Since the computer cannot understand high-level languages,
however, a program called interpreter or compiler is used to convert
high-level language programs into machine code.

• For example, the following is a high-level language statement
(instruction) that computes the area of a circle with radius 5:

area = 5 * 5 * 3.1415

1.3

Popular High-Level Languages

261.3

Interpreting/Compiling Source Code

27

• The instructions in a high-level programming language are
called statements.

• A program written in a high-level language is called a source
program or source code.

• Because a computer cannot understand a source program, a
source program must be translated into machine code for
execution.

• The translation can be done using another programming tool
called an interpreter or a compiler.

1.3

Interpreting Source Code

28

• An interpreter reads one statement from the source code,
translates it to the machine code or virtual machine code, and
then executes it right away.

• Note that a statement from the source code may be translated
into several machine instructions.

1.3

Compiling Source Code

29

• A compiler translates the entire source code into a machine-
code file, and the machine-code file is then executed.

1.3

1.4. Operating Systems

30

https://youtu.be/WGhZL-3yriE?t=1203

Operating Systems

31

• The operating system (OS) is a
program that manages and
controls a computer’s activities.

• You are probably using Windows
10, Linux, or macOS.

• Windows is currently the most
popular PC operating system.

• Application programs - such as
an Internet browser and a word
processor - cannot run without
an operating system.

1.4

1.5. The History of Python

32

▪ What is Python?

▪ Python’s History

▪ Python 2 vs Python 3

https://youtu.be/w3G-aw1-n-U

What is Python?

33

• Python is a general-purpose programming language.

• That means you can use Python to write code for any
programming tasks.

• Python are now used in Google search engine, in mission critical
projects in NASA, in processing financial transactions at New York
Stock Exchange.

General Purpose Interpreted Object-Oriented

1.5

What is Python?

34

General Purpose Interpreted Object-Oriented

• Python is interpreted.

• Which means that python code is translated and executed one
statement at a time by an interpreter.

• In a compiled language, the entire source code is compiled and
then executed altogether.

1.5

What is Python?

35

General Purpose Interpreted Object-Oriented

• Python is an object-oriented programming language.

• Data in Python are objects created from classes.

• A class is essentially a type that defines the objects of the same
kind with properties and methods for manipulating objects.

• Object-oriented programming is a powerful tool for developing
reusable software.

1.5

Python’s History

36

• Python is created by Guido van Rossum in Netherlands in 1990.

• Python is open source.

• Open-source software is a type of computer software in which
source code is released under a license in which the copyright
holder grants users the rights to study, change, and distribute the
software to anyone and for any purpose.

1.5

Python 2 vs Python 3

37

• Python 3 is a newer version, but it is not backward compatible with
Python 2.

• That means if you write a program using Python 2, it may not work
on Python 3.

• For example, the following command works on Python 2, but it
doesn't work on Python 3: print "Hello World".
• To get the previous command working on Python 3, you can write it as

the following: print("Hello World").

• We will learn and use Python 3 in this book.

1.5

1.6. Getting Started with Python

38

▪ Install Python

▪ PyCharm IDE

▪ Install PyCharm

▪ Modes of Python Interpreter

▪ Interactive vs Script Mode

https://youtu.be/Gmb1lLmOJ8A
https://youtu.be/NEZp055c0ys
https://youtu.be/2u9q-WTmLOo
https://youtu.be/2u9q-WTmLOo

Install Python

39

• Go to www.python.org/downloads and then download and install
the last version of Python 3.7.x for your operating system.

• See Lab 1 for more details.

1.6

http://www.python.org/downloads

PyCharm IDE

40

• An integrated development environment (IDE) is an application that
provides comprehensive facilities to programmers for software
development.

• IDEs are large size programs, and many of them are not free.

• For Python programmers, PyCharm is one of the best IDE for Python.

• Also, it has a free version called “Community Edition”.

• In general, using IDEs are the best way to develop programs
especially mid-large programs.

1.6

Install PyCharm

41

• Go to https://www.jetbrains.com/pycharm/download/ and then
download and install “Community” version.

• See Lab 1 for more details.

1.6

https://www.jetbrains.com/pycharm/download/

Modes of Python Interpreter

42

Interactive Mode Script Mode

• Interactive mode provides us with a quick way of running blocks
or a single line of Python code.

• The code executes via the Python Shell (also known as Python
Interactive Shell), which comes with Python installation.

Python Shell on CMD

1.6

Modes of Python Interpreter

43

Interactive Mode Script Mode

• The >>> indicates that the Python shell is ready to execute and
send your commands to the Python interpreter.

• The result is immediately displayed on the Python shell as soon as
the Python interpreter interprets the command.

Python Shell on PyCharm IDE

1.6

Modes of Python Interpreter

44

Interactive Mode Script Mode

• This is the normal mode where a python code is written in a text
file with a ‘.py’ extension, and Python interpreter executes the
file.

• The result of the code will be displayed after the Python
interpreter runs the file.

NotepadPyCharm IDE

1.6

Interactive vs Script Mode

45

The key differences between programming in interactive mode and
programming in script mode:

1. In script mode, a file must be created and saved before executing
the code to get results. In interactive mode, the result is
returned immediately after pressing the <enter> key from the
keyboard.

2. In script mode, you are provided with a direct way of editing your
code. This is not possible in interactive mode.

1.6

A Simple Python Program

46

▪ Program 1: Welcome with Two Messages

▪ Creating and Editing Using PyCharm

▪ Tracing The Program Execution

▪ Code Tracing

https://youtu.be/c4gWVkMQhzQ

Welcome with Two Messages
Program 1

47

Write a program that displays Welcome to Python and Programming is
fun. The output should be as the following:

➢ The Solution:

Welcome to Python

Python is fun

LISTING 1.1 Welcome.py

Display two messages

print("Welcome to Python")

print("Python is fun")

1

2

3

Program 1A Simple Python Program

Run

https://repl.it/@AhmadTayebKAU/CPIT110Chapter1Welcome#main.py

Welcome with Two Messages
Creating and Editing Using PyCharm

48

• First step: open PyCharm and click on “Create New Project”.

Step
1 of 7

Program 1A Simple Python Program

Welcome with Two Messages
Creating and Editing Using PyCharm

49

• First step: open PyCharm and click on “Create New Project”.

Step
2 of 7

Program 1A Simple Python Program

Welcome with Two Messages
Creating and Editing Using PyCharm

50

• Then, change the default name of the project “untitled1”. For
example, name it as “My First Project”, and then click on “Create”.

Step
3 of 7

Program 1A Simple Python Program

Welcome with Two Messages
Creating and Editing Using PyCharm

51

• Then, the new project is created and opened. After that, you have to
create a new Python file inside the project to write the code on it.

Step
4 of 7

Program 1A Simple Python Program

Welcome with Two Messages
Creating and Editing Using PyCharm

52

• Select the project name on the left menu, right click on it and select
“New” → “Python File”.

Step
5 of 7

Program 1A Simple Python Program

Welcome with Two Messages
Creating and Editing Using PyCharm

53

• Then, name the new file “Welcome”, and click on “OK”.

Step
6 of 7

Program 1A Simple Python Program

Welcome with Two Messages
Creating and Editing Using PyCharm

54

• Now, the new file is created and opened. Write the code in it:

Step
7 of 7

Program 1A Simple Python Program

Welcome with Two Messages
Running The Code Using PyCharm

55

• To run the file, right click on any area of the editor and click on (Run
‘Welcome’), which is the name of the file.

Step
1 of 2

Program 1A Simple Python Program

Welcome with Two Messages
Running The Code Using PyCharm

56

• After that, PyCharm is going to run the file using the Python
interpreter, and then display the output of the file for you.

Step
2 of 2

Program 1A Simple Python Program

Welcome with Two Messages
Tracing The Program Execution

57

LISTING 1.1 Welcome.py

Display two messages

print("Welcome to Python")

print("Python is fun")

1

2

3

It is a comment, so do
nothing.

1 of 3A Simple Python Program Program 1

LISTING 1.1 Welcome.py

Display two messages

print("Welcome to Python")

print("Python is fun")

1

2

3

Welcome with Two Messages
Tracing The Program Execution

58

Welcome to Python
The output of the

statement

Execute a statement

2 of 3A Simple Python Program Program 1

LISTING 1.1 Welcome.py

Display two messages

print("Welcome to Python")

print("Python is fun")

1

2

3

Welcome with Two Messages
Tracing The Program Execution

59

Execute a statement

Welcome to Python

Python is fun

The output of the
statement

3 of 3A Simple Python Program Program 1

Code Tracing

60

• Code tracing is when the programmer interprets the
results of each line of code and keeps track of the effect of
each statement.

A Simple Python Program

Simple Examples

61

▪ Program 2: Welcome With Three Messages

▪ Program 3: Compute an Expression

▪ Check Point #1 - #2

https://youtu.be/5MtOy9nQXJ4

Welcome With Three Messages
Program 2

62

Write a program that displays Welcome to Python , Programming is
fun , and Problem Driven . The output should be as the following:

➢ The Solution:

Welcome to Python

Python is fun

Problem Driven

LISTING 1.2 WelcomeWithThreeMessages.py

Display three messages

print("Welcome to Python")

print("Python is fun")

print("Problem Driven")

1

2

3

4

Program 2Simple Examples

Run

https://repl.it/@AhmadTayebKAU/CPIT110Chapter1WelcomeWithThreeMessages#main.py

Compute an Expression
Program 3

63

Write a program that evaluates
10.5 + 2 × 3

45 − 3.5
and print its result.

➢ The Solution:

➢ The output:

0.39759036144578314

LISTING 1.3 ComputeExpression.py

Compute expression

print((10.5 + 2 * 3) / (45 - 3.5))

1

2

Program 3Simple Examples

Run

https://repl.it/@AhmadTayebKAU/CPIT110Chapter1ComputeExpression#main.py

Check Point
#1

64

Identify and fix the errors in the following code:

➢ Solution:
The errors are the incorrect indentation in line 2 and the
punctuation (.) in line 3.

Display two messages

print("Welcome to Python")

print("Python is fun").

1

2

3

Display two messages

print("Welcome to Python")

print("Python is fun")

1

2

3

Simple Examples

Check Point
#2

65

Show the output of the following code:

➢ Solution:

print("3.5 * 4 / 2 - 2.5 is")

print(3.5 * 4 / 2 - 2.5)

1

2

3.5 * 4 / 2 - 2.5 is

4.5

Simple Examples

Anatomy of a Python Program

66

▪ Statement

▪ Indentation

▪ Comment

▪ Special Symbols

https://youtu.be/rzdwSDtbi5M

Statement

67

• A statement represents an action or a sequence of actions.

• The statement print("Welcome to Python") in the program
in Listing 1.1 is a statement to display the greeting
"Welcome to Python“.

LISTING 1.1 Welcome.py

Display two messages

print("Welcome to Python")

print("Python is fun")

1

2

3

It is a statement
(action)

It is a statement
(action)

Anatomy of a Python Program

Indentation

68

• Note that the statements are entered from the first column in
the new line. It would cause an error if the program is typed as
follows:

Display two messages

print("Welcome to Python")

print("Python is fun")

1

2

3

It would cause an error
because this statement

has a wrong
indentation.

Block 1

Block 1, Continuation

Block 2

Block 2, Continuation

Block 3

• The indentation matters in
Python.

• The following figure is a
block structure visualizing
indentation.

Anatomy of a Python Program

Caution

69

• Don’t put any punctuation at the end of a statement.

• For example, the Python interpreter will report errors for the
following code:

Display two messages

print("Welcome to Python").

print("Python is fun").

1

2

3

Anatomy of a Python Program

Note

70

• Python programs are case sensitive.

• It would be wrong, for example, to replace print in the program
with Print.

Display two messages

print("Welcome to Python")

Print("Python is fun")

1

2

3

Anatomy of a Python Program

Comment

71

• A comment is a programmer-readable explanation or
annotation in the source code of a computer program.

• In Listing 1.1, line 1 is a comment that documents what the
program is and how it is constructed.

LISTING 1.1 Welcome.py

Display two messages

print("Welcome to Python")

print("Python is fun“)

1

2

3

It is a comment, so the
Python interpreter will

ignore it when
executing the

program.

Anatomy of a Python Program

Comment

72

• Comments help programmers communicate and understand a
program.

• They are not programming statements and thus are ignored by
the interpreter.

• In Python, comments are preceded by a pound sign (#) on a
line, called a line comment, or enclosed between three
consecutive single quotation marks (''') on one or several lines,
called a paragraph comment.

Anatomy of a Python Program

Comment

73

• When the Python interpreter sees #, it ignores all text after #
on the same line.

• When it sees ''', it scans for the next ''' and ignores any text
between the triple quotation marks.

• Here are examples of comments:

This program displays Welcome to Python (a line comment)

''' This program displays Welcome to Python and

Python is fun (a paragraph comment)

'''

print("Welcome to Python")

print("Python is fun")

1

2

3

4

5

6

Anatomy of a Python Program

Special Symbols

74Anatomy of a Python Program

1.7. Programming Style and
Documentation

75

▪ Programming Style

▪ Documentation

▪ Appropriate Comments and Comment Styles

▪ Proper Indentation and Spacing

https://youtu.be/tmItuK4X-00

Programming Style

76

• Programming style deals with what programs look like.

• When you create programs with a professional programming style,
they not only execute properly but are easy for people to read and
understand.

• This is very important if other programmers will access or modify
your programs.

1.7

Documentation

77

• Documentation is the body of explanatory remarks and comments
pertaining to a program.

• These remarks and comments explain various parts of the program
and help others understand its structure and function.

• As you saw earlier in the chapter, remarks and comments are
embedded within the program itself; Python’s interpreter simply
ignores them when the program is executed.

• Good programming style and proper documentation make a
program easy to read and prevents errors.

• Programming style and documentation are as important as coding.
In the following slides, there are a few guidelines.

1.7

Appropriate Comments and Comment
Styles

78

• Include a summary comment at the beginning of the program to
explain what the program does, its key features, and any unique
techniques it uses.

• In a long program, you should also include comments that introduce
each major step and explain anything that is difficult to read.

• It is important to make comments concise so that they do not crowd
the program or make it difficult to read.

• In homework and exams, Include your name, class section,
instructor, date, and a brief description at the beginning of the
program.

1.7

Proper Indentation and Spacing

79

• Indentation

◦ Indent four spaces.

• Spacing
◦ A consistent spacing style makes programs clear and easy to read,

debug, and maintain.

◦ Use blank line to separate segments of the code.

print(20+50)

print(20- 10)

print(60*5+30)

print("A","B")

print(20 + 50)

print(20 - 10)

print(60 * 5 + 30)

print("A" ,"B")

1.7

1.8. Programming Errors

80

▪ Types of Programming Errors

▪ Syntax Errors

▪ Runtime Errors

▪ Logic Errors

▪ Notes

▪ Check Point #3

https://youtu.be/ZXe-VQujdG8

Types of Programming Errors

81

• Programming errors can be categorized into three types:
◦ Syntax Errors
▪ Error in code construction.

◦ Runtime Errors
▪ Causes the program to abort.

◦ Logic Errors
▪ Produces incorrect result.

1.8

Syntax Errors

82

• Syntax errors result from errors in code construction, such as
mistyping a statement, incorrect indentation, omitting some
necessary punctuation, or using an opening parenthesis without a
corresponding closing parenthesis.

• Python has its own syntax, and you need to write code that obeys
the syntax rules. If your program violates the rules Python will report
syntax errors.

1.8

Runtime Errors

83

• Runtime errors are errors that cause a program to terminate
abnormally.

• They occur while a program is running if the Python interpreter
detects an operation that is impossible to carry out.

• Input mistakes typically cause runtime errors.

1.8

Runtime Errors

84

• An input error occurs when the user enters a value that the program
cannot handle.

• For instance, if the program expects to read in a number, but instead
the user enters a string of text, this causes data-type errors to occur
in the program.

1.8

Logic Errors

85

• Logic errors occur when a program does not perform the way it was
intended to.

• Logic errors produce unintended, incorrect or undesired output or
other behavior, although it may not immediately be recognized as
such.

• In fact, they do not cause the program to terminate abnormally.

1.8

Logic Errors
Example

86

The following is a program that converts a temperature (35 degrees)

from Fahrenheit to Celsius. T(°C) =
5

9
× (T(°F) − 32)

• Replace the expression 5 / 9 * 35 – 32 with 5 / 9 * (35 – 32) to get the correct
result.

• That is, you need to add parentheses around (35 – 32) so Python will calculate
that expression first before doing the division.

Fahrenheit 35 is Celsius degree

-12.555555555555554

LISTING 1.4 ShowLogicErrors.py

Convert Fahrenheit to Celsius

print("Fahrenheit 35 is Celsius degree ")

print(5 / 9 * 35 - 32)

1

2

3

The produced result (-12.55)
is not correct. The correct

result is (1.66).

1.8

Run

https://repl.it/@AhmadTayebKAU/CPIT110Chapter1ShowLogicErrors#main.py

Notes

87

• In Python, syntax errors are actually treated like runtime errors
because they are detected by the interpreter when the program is
executed.

• In general, syntax and runtime errors are easy to find and easy to
correct, because Python gives indications as to where the errors
came from and why they are wrong.

• Finding logic errors, on the other hand, can be very challenging.

1.8

Check Point
#3

88

If you forget to put a closing quotation mark on a string, what kind of
error will be raised?
➢ Answer: Syntax Error

If your program needs to read data from a file, but the file does not
exist, an error would occur when running this program. What kind of
error is this?
➢ Answer: Runtime Error

Suppose you write a program for computing the perimeter of a
rectangle and you mistakenly write your program so that it computes
the area of a rectangle. What kind of error is this?
➢ Answer: Logic Error

1.8

End

89

▪ Test Questions

▪ Programming Exercises

Test Questions

90

• Do the test questions for this chapter online at
https://liveexample-ppe.pearsoncmg.com/selftest/selftestpy?chapter=1

https://liveexample-ppe.pearsoncmg.com/selftest/selftestpy?chapter=1

Programming Exercises

91

• Page 27 – 29:
◦ 1.1 – 1.11

• Lab #1

• Lab #2

https://csu.kau.edu.sa/pages-cpit-110labsar.aspx
https://csu.kau.edu.sa/pages-cpit-110labsar.aspx

