
Chapter 3
Mathematical Functions, and
Strings
CPIT 110 (Problem-Solving and Programming)

Version 2.5

Introduction to Programming Using Python, By: Y. Daniel Liang

Sections

2

• 3.1. Motivations

• 3.2. Common Python Functions

• 3.3. Strings and Characters

• 3.4. Case Study: Minimum Number of Coins

• 3.6. Formatting Numbers and Strings

Programs Check Points Labs

https://youtu.be/MkN99fPe3I8
https://youtu.be/MkN99fPe3I8?t=122
https://youtu.be/JSr3tFhIRQI
https://youtu.be/2ewzshTKVZ0
https://youtu.be/iNo5Js1E0H4

Programs

3

• Program 1: Compute Angles

• Program 2: Compute Change

• Problem 3: Print a Table

Python Online IDE

https://repl.it/languages/python3

Check Points

4

• Section 3.2
◦ #1

• Section 3.3
◦ #2

◦ #3

• Section 3.6
◦ #4

◦ #5

Objectives

5

• To solve mathematics problems by using the functions in the math module (3.2).

• To represent and process strings and characters (3.3-3.4).

• To represent special characters using the escape sequence (3.3.4).

• To invoke the print function with the end argument (3.3.5).

• To convert numbers to a string using the str function (3.3.6).

• To use the + operator to concatenate strings (3.3.7).

• To read strings from the console (3.3.8).

• To format numbers and strings using the format function (3.6).

3.1. Motivations

6

https://youtu.be/MkN99fPe3I8

Motivations

7

• Suppose you need to estimate the area enclosed by four cities, given
the GPS locations (latitude and longitude) of these cities, as shown
in the following diagram. How would you write a program to solve
this problem? You will be able to write such a program after
completing this chapter.

3.1

3.2. Common Python Functions

8

▪ Python Built-in Functions

▪ Simple Python Built-in Functions

▪ math Module

▪ Problem 1: Compute Angles

▪ Check Point #1

https://youtu.be/MkN99fPe3I8?t=122
https://youtu.be/ARrrWvqfAy4
https://youtu.be/MkN99fPe3I8?t=122

Python Built-in Functions

9

• A function is a group of statements that performs a specific
task.

• Python, as well as other programming languages, provides a
library of functions.

• You have already used the functions eval, input, print, and int.

• These are built-in functions and they are always available in the
Python interpreter. You don’t have to import any modules to
use these functions.

• Additionally, you can use the built-in functions abs, max, min,
pow, and round, as shown in the following slide.

3.2

Simple Python Built-in Functions

103.2

Simple Python Built-in Functions
Example

11

>>> abs(-3) # Returns the absolute value

3

>>> abs(-3.5) # Returns the absolute value

3.5

>>> max(2, 3, 4, 6) # Returns the maximum number

6

>>> min(2, 3, 4) # Returns the minimum number

2

>>> pow(2, 3) # Same as 2 ** 3

8

>>> pow(2.5, 3.5) # Same as 2.5 ** 3.5

24.705294220065465

>>> round(3.51) # Rounds to its nearest integer

4

>>> round(3.4) # Rounds to its nearest integer

3

>>> round(3.1456, 3) # Rounds to 3 digits after the decimal point

3.146

3.2

math Module

12

• Many programs are created to solve mathematical problems.

• Some of the most popular mathematical functions are defined
in the Python math module. These include trigonometric
functions, representation functions, logarithmic functions,
angle conversion functions, etc.

• In addition, two mathematical constants (pi and e) are also
defined in this module.

3.2

math Module

13

• The Python math module provides the mathematical functions
listed in the following slide.

• To use functions in a module, you have to import it first as the
following syntax:

• For example, we have to import the math module before using
its functions or constants :

>>> import math

>>> math.pi # pi is a constant

3.141592653589793

>>> math.cos(5.89) # cos is a function

0.92369335287311

import module_name

3.2

143.2

math Module
Example

15

LISTING 3.1 MathFunctions.py

import math # import Math module to use the math functions

Test algebraic functions

print("exp(1.0) =", math.exp(1))

print("log(math.e) =", math.log(math.e))

print("log10(10, 10) =", math.log(10, 10))

print("sqrt(4.0) =", math.sqrt(4.0))

Test trigonometric functions

print("sin(PI / 2) =", math.sin(math.pi / 2))

print("cos(PI / 2) =", math.cos(math.pi / 2))

print("tan(PI / 2) =", math.tan(math.pi / 2))

print("degrees(1.57) =", math.degrees(1.57))

print("radians(90) =", math.radians(90))

1

2

3

4

5

6

7

8

9

10

11

12

13

14

3.2

math Module
The Output of The Example

16

exp(1.0) = 2.718281828459045

log(math.e) = 1.0

log10(10, 10) = 1.0

sqrt(4.0) = 2.0

sin(PI / 2) = 1.0

cos(PI / 2) = 6.123233995736766e-17

tan(PI / 2) = 1.633123935319537e+16

degrees(1.57) = 89.95437383553924

radians(90) = 1.5707963267948966

3.2

Compute Angles
Program 1

17

Write a program to get three points of a triangle from the user.
Then your program should compute and display the angles in
degrees using the following formula:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝1𝑥, 𝑝1𝑦 , (𝑝2𝑥, 𝑝2𝑦)) = 𝑝2𝑥 − 𝑝1𝑥 2 + (𝑝2𝑦 − 𝑝1𝑦)2

Program 13.2

Enter three points: 1, 1, 6.5, 1, 6.5, 2.5 <Enter>

The three angles are 15.26 90.0 74.74

Note: acos(x) returns the arc cosine of x, in radians

Remember

18

• Don’t be intimidated by the mathematical formula.

• As we discussed early in Chapter 2, Program 9 (Computing
Loan Payments), You don’t have to know how the
mathematical formula is derived in order to write a program
for computing the loan payments.

• Here in this example (Program 1):
◦ Given the length of three sides, you can use the given formula to

write a program to compute the angles without having to know
how the formula is derived.

◦ In order to compute the lengths of the sides, we need to know the
coordinates of three corner points and compute the distances
between the points.

3.2

Compute Angles
Phase 1: Problem-solving

19

• The problem didn't give us specific formulas to calculate a, b,
and c. But it gives us a general formula to calculate the
distance of two points (p1, p2).

• So, we can use this formula to generate formulas for
calculating a, b, and c as the following:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝1𝑥, 𝑝1𝑦 , (𝑝2𝑥, 𝑝2𝑦)) = 𝑝2𝑥 − 𝑝1𝑥 2 + (𝑝2𝑦 − 𝑝1𝑦)2

a = 𝑥2 − 𝑥3 2 + (𝑦2 − 𝑦3)2

𝑏 = 𝑥1 − 𝑥3 2 + (𝑦1 − 𝑦3)2

𝑐 = 𝑥1 − 𝑥2 2 + (𝑦1 − 𝑦2)2

Program 13.2

Compute Angles
Phase 1: Problem-solving

20

• Design your algorithm:
1. Get three points.
▪ Use input function

▪ 1 point = x and y (two inputs)

▪ 3 points = 3 * 2 = 6 inputs

2. Compute a: a = 𝑥2 − 𝑥3 2 + (𝑦2 − 𝑦3)2

3. Compute b: b = 𝑥1 − 𝑥3 2 + (𝑦1 − 𝑦3)2

4. Compute c: c = 𝑥1 − 𝑥2 2 + (𝑦1 − 𝑦2)2

5. Compute A: A = acos((a * a - b * b - c * c) / (-2 * b * c))
6. Compute B: B = acos((b * b - a * a - c * c) / (-2 * a * c))
7. Compute C: C = acos((c * c - b * b - a * a) / (-2 * a * b))
8. Convert angles (A, B, C) in radians to degrees
▪ Use math.degrees function

9. Display the results (A, B, C) with two digits after the decimal point

Program 13.2

Compute Angles
Phase 2: Implementation

21

• Remember:

• In Python, you can use the sqrt function in the math module to
calculate a square root. For example:

• Also, you can use the pow function to calculate the power of a
number. You don’t need to import any module because this function
is built-in Python interpreter. For example:

𝑎 = 𝑎0.5 𝑎2 = 𝑎 × 𝑎

𝑎𝑏 = 𝑝𝑜𝑤(𝑎, 𝑏)
𝑎𝑏 = 𝑎 ∗∗ 𝑏

>>> import math

>>> math.sqrt(50)

7.0710678118654755

>>> 50 ** 0.5

7.0710678118654755

>>> pow(2, 6)

64

>>> 2 ** 6

64

𝑎 = 𝑚𝑎𝑡ℎ. 𝑠𝑞𝑟𝑡(𝑎)
𝑎 = 𝑎 ∗∗ 0.5

Program 13.2

Compute Angles
Phase 2: Implementation

22

• Note:
◦ The function math.acos(x) returns the arc cosine of x, in radians.

◦ In the solution of the problem, we need to display the angles in degrees
not in radians.

◦ So, we can use the function math.degrees(x) to convert angle x from
radians to degrees.

>>> import math

>>> math.acos(0.5)

1.0471975511965979

>>> math.degrees(1.0471975511965979)

60.00000000000001

>>> math.radians(60)

1.0471975511965976

Program 13.2

Compute Angles
Phase 2: Implementation

23

LISTING 3.2 ComputeAngles.py

import math

x1, y1, x2, y2, x3, y3 = eval(input("Enter three points: "))

a = math.sqrt((x2 - x3) * (x2 - x3) + (y2 - y3) * (y2 - y3))

b = math.sqrt((x1 - x3) * (x1 - x3) + (y1 - y3) * (y1 - y3))

c = math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2))

A = math.degrees(math.acos((a * a - b * b - c * c) / (-2 * b * c)))

B = math.degrees(math.acos((b * b - a * a - c * c) / (-2 * a * c)))

C = math.degrees(math.acos((c * c - b * b - a * a) / (-2 * a * b)))

print("The three angles are ", round(A * 100) / 100.0,

round(B * 100) / 100.0, round(C * 100) / 100.0)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Program 13.2

Enter three points: 1, 1, 6.5, 1, 6.5, 2.5 <Enter>

The three angles are 15.26 90.0 74.74

Run

https://repl.it/@AhmadTayebKAU/CPIT110Chapter3ComputeAngles#main.py

Compute Angles
Discussion

24

• In line 3, the program prompts the user to enter three points.

• This prompting message is not clear. You should give the user explicit
instructions on how to enter these points as follows:

• In lines 5–7, the program computes the distances between the points.

• In lines 9–11, it applies the formula to compute the angles.

• In lines 13–14, the angles are rounded to display up to two digits after
the decimal point.

• In the following slide, we have simplified the implementation.

input("Enter six coordinates of three points separated by commas \

like x1, y1, x2, y2, x3, y3: ")

Program 13.2

Compute Angles
Simplified Implementation

25

SimplifiedComputeAngles.py

import math

x1, y1, x2, y2, x3, y3 = eval(input("Enter six coordinates \

of three points separated by commas like x1, y1, x2, y2, x3, y3: "))

a = math.sqrt(pow(x2 - x3, 2) + pow(y2 - y3, 2))

b = math.sqrt(pow(x1 - x3, 2) + pow(y1 - y3, 2))

c = math.sqrt(pow(x1 - x2, 2) + pow(y1 - y2, 2))

Compute angles in radians

A = math.acos((a * a - b * b - c * c) / (-2 * b * c))

B = math.acos((b * b - a * a - c * c) / (-2 * a * c))

C = math.acos((c * c - b * b - a * a) / (-2 * a * b))

Convert angels to degrees

A = math.degrees(A)

B = math.degrees(B)

C = math.degrees(C)

Get two digits after the decimal point

A = round(A, 2)

B = round(B, 2)

C = round(C, 2)

Display results

print("The three angles are ", A, B, C)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Program 13.2

Run

https://repl.it/@AhmadTayebKAU/CPIT110Chapter3SimplifiedComputeAngles#main.py

Compute Angles
Simplified Implementation

Program 1 26

Output:

3.2

Enter six coordinates of three points separated by commas

like x1, y1, x2, y2, x3, y3: 1, 1, 6.5, 1, 6.5, 2.5 <Enter>

The three angles are 15.26 90.0 74.74

Remember

27

• The following statement is wrong (syntax error):

• This because Python interpreter doesn't see the closing quotation
mark of the string in line 1.

• So, you have to tell Python interpreter that the string is continued
on the next line by place the line continuation symbol (\) at the end
of a line.

• To fix the previous example:

input("Enter six coordinates of three points separated by commas

like x1, y1, x2, y2, x3, y3: ")

1

2

input("Enter six coordinates of three points separated by commas \

like x1, y1, x2, y2, x3, y3: ")

1

2

3.2

Check Point
#1

28

Evaluate the following functions:

• min(2, 2, 1)

• max(2, 3, 4)

• abs(-2.5)

• math.ceil(-2.5)

• math.floor(-2.5)

• round(3.5)

• round(3.4)

• math.ceil(2.5)

• math.floor(2.5)

• round(-2.5)

• round(-2.6)

1

4

2.5

-2

-3

4

3

3

2

-2

-3

3.2

3.3. Strings and Characters

29

▪ Escape Sequences for Special Characters

▪ Python Escape Sequences

▪ Printing Without the Newline

▪ The str Function

▪ The String Concatenation Operator

▪ Reading Strings From the Console

▪ Check Point #2 - #3

https://youtu.be/JSr3tFhIRQI
https://youtu.be/V9fjOF7cT5Q
https://youtu.be/JSr3tFhIRQI

Strings and Characters

30

• In addition to processing numeric values, you can process
strings in Python.

• A string is a sequence of characters and can include text and
numbers.

• String values must be enclosed in matching single quotes (') or
double quotes (").

• Python does not have a data type for characters.

• A single-character string represents a character.

3.3

Strings and Characters
Example

31

• The first statement assigns a string with the character A to the
variable letter.

• The second statement assigns a string with the digit character
4 to the variable numChar.

• The third statement assigns the string Good morning to the
variable message.

letter = 'A' # Same as letter = "A"

numChar = '4' # Same as numChar = "4"

message = "Good morning" # Same as message = 'Good morning'

1

2

3

3.3

Note

32

• For consistency, this book uses:
◦ double quotes (") for a string with more than one character.

◦ single quotes (') for a string with a single character or an
empty string.

• This convention is consistent with other programming
languages, so it will be easy for you to convert a Python
program to a program written in other languages.

3.3

Escape Sequences for Special Characters

33

• Suppose you want to print a message with quotation marks in
the output. Can you write a statement like this?

• No, this statement has an error. Python thinks the second
quotation mark is the end of the string and does not know
what to do with the rest of the characters.

• To overcome this problem, Python uses a special notation to
represent special characters.

• This special notation, which consists of a backslash (\) followed
by a letter or a combination of digits, is called an escape
sequence.

print("He said, "John's program is easy to read"")1

3.3

Python Escape Sequences

34

• The \n character is also known as a newline, line break or end-of-line (EOL)
character, which signifies the end of a line.

• The \f character forces the printer to print from the next page.

• The \r character is used to move the cursor to the first position on the same line.

• The \f and \r characters are rarely used in this book.

3.3

Python Escape Sequences

35

• Now you can print the previous quoted message using the following
statement:

• The output:

• Note that the symbols \ and " together represent one character.

print("He said, \"John's program is easy to read\"")1

He said, "John's program is easy to read"

3.3

Python Escape Sequences
Example

36

print("ABC\nDEF")
ABC

DEF

Newline (\n)

print("ABC\tDEF") ABC DEF

Tab (\t)

print("ABC\rDEF") DEF

Carriage return (\r)

print("ABC\bDEF") ABDEF

Backspace (\b)

3.3

Python Escape Sequences
Example

37

print("He said \"OK\"") He said "OK"

Double Quote (\")

print('He said \'OK\'') He said 'OK'

Single Quote (\')

print("ABC\\DEF") ABC\DEF

Backslash (\\)

print("ABC\fDEF")
ABC

DEF

Formfeed (\f)

3.3

Don't Get Confused

38

print("nnn\nnnn\n\tnnn\tt\nn\r *\nTest\b\b\b\bAhmad")

nnn

nnn

nnn t

*

Ahmad

print("") # Empty String

print("Line 2")

print('\b\b\b')

print("Line 4")

Line 2

Line 4

3.3

Printing Without The Newline

39

• When you use the print function, it automatically prints a
linefeed (\n) to cause the output to advance to the next line.

• If you don’t want this to happen after the print function is
finished, you can invoke the print function by passing a special
argument end = "anyEndingString" using the following syntax:

• For example:

print(item, end = "anyEndingString")

print("AAA", end = ' ')

print("BBB", end = '')

print("CCC", end = '***')

print("DDD", end = '***')

1

2

3

4

AAA BBBCCC***DDD***

3.3

Printing Without The Newline

40

• Also, You can also use the end argument for printing multiple
items using the following syntax:

The area is 28.274333882308138 and the perimeter is 6

import math

radius = 3

print("The area is", radius * radius * math.pi, end = ' ')

print("and the perimeter is", 2 * radius)

1

2

3

4

3.3

The str Function

41

• The str function can be used to convert a number into a string.

• For example:

>>> s = str(3.4) # Convert a float to string

>>> s

'3.4'

>>> s = str(3) # Convert an integer to string

>>> s

'3'

>>>

3.3

The String Concatenation Operator

42

• You can use the + operator to add two numbers.

• Also, the + operator can be used to concatenate two strings.

• Here are some examples:

>>> message = "Welcome " + "to " + "Python"

>>> message

'Welcome to Python'

>>> chapterNo = 3

>>> s = "Chapter " + str(chapterNo)

>>> s

'Chapter 3'

>>>

3.3

The String Concatenation Operator

43

• The augmented assignment += operator can also be used for
string concatenation.

• For example:

>>> message = "Welcome to Python"

>>> message

'Welcome to Python'

>>> message += " and Python is fun"

>>> message

'Welcome to Python and Python is fun'

>>>

3.3

Reading Strings From the Console

44

• To read a string from the console, use the input function.

• For example, the following code reads three strings from the
keyboard:

s1 = input("Enter a string: ")

s2 = input("Enter a string: ")

s3 = input("Enter a string: ")

print("s1 is " + s1)

print("s2 is " + s2)

print("s3 is " + s3)

1

2

3

4

5

6

Enter a string: Welcome <Enter>

Enter a string: to <Enter>

Enter a string: Python <Enter>

s1 is Welcome

s2 is to

s3 is Python

3.3

Check Point
#2

45

Write a one statement that is equivalent to the following code:

➢ Solution:

Or

Or

print("Line 1")

print("Line 2")

print("Line 3")

1

2

3

print("Line 1" + "\n" + "Line 2" + "\n" + "Line 3")

print("Line 1\n" + "Line 2\n" + "Line 3")

print("Line 1\nLine 2\nLine 3")

3.3

Check Point
#3

46

Show the result of the following code:

➢ Solution:

sum = 2 + 3

print(sum)

s = '2' + '3'

print(s)

1

2

3

4

5

23

3.3

3.4. Case Study: Minimum Number of
Coins

47

▪ Program 2: Compute Change

https://youtu.be/2ewzshTKVZ0

Compute Change
Program 2

48

Write a program that lets the user enter the amount in decimal
representing dollars and cents and output a report listing the
monetary equivalent in single dollars, quarters, dimes, nickels,
and pennies as shown in the sample run. Your program should
report maximum number of dollars, then the maximum number
of quarters, and so on, in this order.

Enter an amount in double, e.g., 11.56: 11.56 <Enter>

Your amount 11.56 consists of

11 dollars

2 quarters

0 dimes

1 nickels

1 pennies

Program 23.4

Compute Change
Phase 1: Problem-solving

49

• A reminder about U.S. monetary units:
▪ 1 dollar = 100 cents (or pennies)

▪ 1 quarter = 25 cents

▪ 1 dime = 10 cents

▪ 1 nickel = 5 cents

• So if you need to give someone 42 cents in change, you should
give: 0 dollar, 1 quarter, 1 dime, 1 nickel, and 2 pennies.

Program 23.4

Compute Change
Phase 1: Problem-solving

50

• First step: UNDERSTAND the problem!

• So let us look at an example run:

• Is it clear what the problem is asking of us?
▪ Make sure you understand the question before starting

Enter an amount in double, e.g., 11.56: 11.56 <Enter>

Your amount 11.56 consists of

11 dollars

2 quarters

0 dimes

1 nickels

1 pennies

Program 23.4

Compute Change
Phase 1: Problem-solving

51

Design your algorithm:

1. Prompt the user to enter the amount as a decimal
number.

▪ amount = eval(input(“Message…”))
▪ Example: 11.56

2. Convert this amount into cents (multiply by 100)
▪ totalCents = int(amount * 100)
▪ Example: 11.56 * 100 = 1156

Program 23.4

Compute Change
Phase 1: Problem-solving

52

Design your algorithm:

3. Get the total number of dollars by now dividing by 100.
And get remaining cents by using totalCents % 100.

▪ totalDollars = totalCents // 100
▪ Example: 1156 // 100 = 11

▪ remainingCents = totalCents % 100
▪ Example: 1156 % 100 = 56

Program 23.4

Compute Change
Phase 1: Problem-solving

53

Design your algorithm:

4. Get the total # of quarters by dividing remainingCents by
25. And then recalculate remainingCents.

▪ totalQuarters = remainingCents // 25
▪ Example: 56 // 25 = 2

▪ remainingCents = remainingCents % 25
▪ Example: 56 % 25 = 6

Program 23.4

Compute Change
Phase 1: Problem-solving

54

Design your algorithm:

5. Get the total # of dimes by dividing remainingCentsby
10. And then recalculate remainingCents.

▪ totalDimes = remainingCents // 10
▪ Example: 6 // 10 = 0

▪ remainingCents = remainingCents % 10
▪ Example: 6 % 10 = 6

▪ So nothing changed at this step. remainingCents is still 6.

Program 23.4

Compute Change
Phase 1: Problem-solving

55

Design your algorithm:

6. Get the total # of nickels by dividing remainingCents by
5. And then recalculate remainingCents.

▪ totalDimes = remainingCents // 5
▪ Example: 6 // 5 = 1

▪ remainingCents = remainingCents % 5
▪ Example: 6 % 5 = 1

Program 23.4

Compute Change
Phase 1: Problem-solving

56

Design your algorithm:

7. The value stored in remainingCents is the number of
pennies left over.

▪ Example: remainingCents = 1

8. Display the result.
▪ Example:

Dollars = 11, Quarters = 2, Dimes = 0, Nickels = 1, Pennies = 1

Program 23.4

Compute Change
Phase 2: Implementation

57

LISTING 3.4 ComputeChange.py

Receive the amount

amount = eval(input("Enter an amount in double, e.g., 11.56: "))

Convert the amount to cents

remainingAmount = int(amount * 100)

Find the number of one dollars

numberOfOneDollars = remainingAmount // 100

remainingAmount = remainingAmount % 100

Find the number of quarters in the remaining amount

numberOfQuarters = remainingAmount // 25

remainingAmount = remainingAmount % 25

Find the number of dimes in the remaining amount

numberOfDimes = remainingAmount // 10

remainingAmount = remainingAmount % 10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Program 23.4

Run

https://repl.it/@AhmadTayebKAU/CPIT110Chapter3ComputeChange#main.py

Compute Change
Phase 2: Implementation

58

LISTING 3.4 ComputeChange.py

Find the number of nickels in the remaining amount

numberOfNickels = remainingAmount // 5

remainingAmount = remainingAmount % 5

Find the number of pennies in the remaining amount

numberOfPennies = remainingAmount

Display results

print("Your amount", amount, "consists of\n",

"\t", numberOfOneDollars, "dollars\n",

"\t", numberOfQuarters, "quarters\n",

"\t", numberOfDimes, "dimes\n",

"\t", numberOfNickels, "nickels\n",

"\t", numberOfPennies, "pennies")

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Program 23.4

Run

https://repl.it/@AhmadTayebKAU/CPIT110Chapter3ComputeChange#main.py

Compute Change
Trace The Program Execution

59

Enter an amount in double, e.g., 11.56: 11.56 <Enter>

Your amount 11.56 consists of

11 dollars

2 quarters

0 dimes

1 nickels

1 pennies

Program 23.4

Compute Change
Discussion

60

• The variable amount stores the amount entered from the console
(line 2). This variable is not changed, because the amount has to be
used at the end of the program to display the results.

• The program introduces the variable remainingAmount (line 5) to
store the changing remainingAmount.

• The variable amount is a float representing dollars and cents.

• It is converted to an integer variable remainingAmount, which
represents all the cents. For instance, if amount is 11.56, then the
initial remainingAmount is 1156. 1156 // 100 is 11 (line 8).

• The remainder operator obtains the remainder of the division. So,
1156 % 100 is 56 (line 9).

Program 23.4

Compute Change
Discussion

61

• The program extracts the maximum number of quarters from
remainingAmount and obtains a new remainingAmount (lines 12–
13).

• Continuing the same process, the program finds the maximum
number of dimes, nickels, and pennies in the remaining amount.

• As shown in the sample run, 0 dimes, 1 nickels, and 1 pennies are
displayed in the result. It would be better not to display 0 dimes, and
to display 1 nickel and 1 penny using the singular forms of the
words. You will learn how to use selection statements to modify this
program in the next chapter.

Program 23.4

Caution

Program 2 62

• One serious problem with this example is the possible loss of
precision when converting a float amount to the integer
remainingAmount.

• This could lead to an inaccurate result.

• If you try to enter the amount 10.03, 10.03 * 100 might be
1002.9999999999999.

• You will find that the program displays 10 dollars and 2 pennies.

• To fix the problem, enter the amount as an integer value
representing cents (see Exercise 3.8).

3.4

3.6. Formatting Numbers and Strings

63

▪ Formatting Floating-Point Numbers

▪ Formatting as a Percentage

▪ Justifying Format

▪ Formatting Integers

▪ Formatting Strings

▪ Frequently Used Specifiers

▪ Problem 3: Print a Table

▪ Check Point #4 - #5

https://youtu.be/iNo5Js1E0H4
https://youtu.be/St3dgjywOdY
https://youtu.be/iNo5Js1E0H4

Formatting Numbers and Strings

64

• When printing float values, often we do not need or want all
the decimals.

• In fact, often we want only two (for money)!

• In Chapter 2 and this chapter, we have learned that you can get
two digits after the decimal as follows:

◦ However, the format is still not correct. There should be two digits
after the decimal point like 16.40 rather than 16.4.

x = 16.404674

x = int(x * 100) / 100 # x => 1640 / 100 = 16.4

print("x is", x) # output: x is 16.4

Or we can use the round(num, digit) function

print("x is", round(x, 2)) # output: x is 16.4

1

2

3

4

5

3.6

Formatting Numbers and Strings

65

• You can use the format function to format a number or a string
and return the result as a string.

• How to print 16.404674 with only two decimals?

• The syntax to invoke format function is

◦ where item is a number or a string and format-specifier is a string
that specifies how the item is formatted.

◦ The function returns a string.

x = 16.404674

print("x is", format(x, ".2f")) # print: x is 16.40

1

2

format(item, format-specifier)

3.6

Formatting Floating-Point Numbers

66

• If the item is a float value, you can use the specifier to give the width
and precision of the format in the form of width.precisionf. Here,
width specifies the width of the resulting string, precision specifies
the number of digits after the decimal point, and f is called the
conversion code, which sets the formatting for floating point
numbers. For example:

print(format(57.467657, "10.2f"))

print(format(123456782.923, "10.2f"))

print(format(57.4, "10.2f"))

print(format(57, "10.2f"))

1

2

3

4

• A square box □ denotes a blank space.

• Note that the decimal point is counted as one space.

3.6

Formatting Floating-Point Numbers

67

• The format("10.2f") function formats the number into a string
whose width is 10, including a decimal point and two digits after the
point.
◦ The number is rounded to two decimal places.

◦ Thus there are seven digits allocated before the decimal point.

◦ If there are fewer than seven digits before the decimal point, spaces are
inserted before the number.

◦ If there are more than seven digits before the decimal point, the
number’s width is automatically increased.

◦ For example, format(12345678.923, "10.2f") returns 12345678.92, which
has a width of 11.

3.6

Formatting Floating-Point Numbers

68

• You can omit the width specifier. If so, it defaults to 0.

• In this case, the width is automatically set to the size needed for
formatting the number.

• For example:

print(format(57.467657, "10.2f"))

print(format(57.467657, ".2f"))

1

2

3.6

Formatting as a Percentage

69

• You can use the conversion code % to format a number as a
percentage.

• For example:

• The format 10.2% causes the number to be multiplied by 100 and
displayed with a % sign following it.

• The total width includes the % sign counted as one space.

print(format(0.53457, "10.2%"))

print(format(0.0033923, "10.2%"))

print(format(7.4, "10.2%"))

print(format(57, "10.2%"))

1

2

3

4

3.6

Justifying Format

70

• By default, the format of a number is right justified.

• You can put the symbol < in the format specifier to specify that
the item be left-justified in the resulting format within the
specified width.

• For example:
print(format(57.467657, "10.2f"))

print(format(57.467657, "<10.2f"))

1

2

3.6

Formatting Integers

71

• The conversion code d can be used to format an integer in
decimal.

• You can specify a width for the conversion.

• For example:

print(format(59832, "10d"))

print(format(59832, "<10d"))

1

2

3.6

Formatting Strings

72

• You can use the conversion code s to format a string with a
specified width.

• For example:

• The format specifier 20s specifies that the string is formatted
within a width of 20.

• By default, a string is left justified.

• To right-justify it, put the symbol > in the format specifier. If the
string is longer than the specified width, the width is
automatically increased to fit the string.

print(format("Welcome to Python", "20s"))

print(format("Welcome to Python", "<20s"))

print(format("Welcome to Python", ">20s"))

print(format("Welcome to Python and Java", ">20s"))

1

2

3

4

3.6

Frequently Used Specifiers

733.6

Note

74

• The format function uses the built-in round function when
dealing with floating-point numbers.

print(format(123.426, "10.2f")) 123.43

print(round(123.426, 2)) 123.43

print(format(123.424, "10.2f")) 123.42

print(round(123.424, 2)) 123.42

print(format(12.678, ".0f")) 13

print(round(12.678)) 13

print(format(12.378, ".0f")) 12

print(round(12.378)) 12

3.6

Note

75

• The behavior of round() for floats can be surprising.

• For example: round(2.675, 2) gives 2.67 instead of the
expected 2.68.

• This is not a bug: it’s a result of the fact that most decimal
fractions can’t be represented exactly as a float.

3.6

Print a Table
Program 3

76

Write a program that displays the following table as shown in the
sample run:

x| x^2 √x

5| 25.00 2.24

500| 250000.00 22.36

20| 400.00 4.47

3000| 9000000.00 54.77

Program 33.6

Print a Table
Implementation A

77

• Let us see another implementation of the same problem in the
next slide. Then we will discuss which one is the best.

PrintTableA.py

import math

The header of the table

print("---------------------------------")

print(format("x", ">5s") + '|', format("x^2", "12s"), format("√x", "10s"))

print("---------------------------------")

print(format(5, ">5d") + '|', format(5 ** 2, "<12.2f"), format(math.sqrt(5), "<10.2f"))

print(format(500, ">5d") + '|', format(500 ** 2, "<12.2f"), format(math.sqrt(500), "<10.2f"))

print(format(20, ">5d") + '|', format(20 ** 2, "<12.2f"), format(math.sqrt(20), "<10.2f"))

print(format(3000, ">5d") + '|', format(3000 ** 2, "<12.2f"), format(math.sqrt(3000), "<10.2f"))

The footer of the table

print("---------------------------------")

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Program 33.6

Run

https://repl.it/@AhmadTayebKAU/CPIT110Chapter3PrintTableA#main.py

Print a Table
Implementation B

78

PrintTableB.py

import math

SEPARATOR = '|' # a constant to represent the separator between the first and second columns

FORMAT_1 = ">5d" # a constant to represent the Specifier for the first column format

FORMAT_2 = "<12.2f" # a constant to represent the Specifier for the second column format

FORMAT_3 = "<10.2f" # a constant to represent the Specifier for the first third format

The header of the table

print("---------------------------------")

print(format("x", ">5s") + SEPARATOR, format("x^2", "12s"), format("√x", "10s"))

print("---------------------------------")

x = 5 # this variable stores the value of x that will be included with the next calculations

print(format(x, FORMAT_1) + SEPARATOR, format(x ** 2, FORMAT_2), format(math.sqrt(x), FORMAT_3))

x = 500 # change the value, so we don't need to change the previous statement to apply the change

print(format(x, FORMAT_1) + SEPARATOR, format(x ** 2, FORMAT_2), format(math.sqrt(x), FORMAT_3))

x = 20 # change the value, so we don't need to change the previous statement to apply the change

print(format(x, FORMAT_1) + SEPARATOR, format(x ** 2, FORMAT_2), format(math.sqrt(x), FORMAT_3))

x = 3000 # change the value, so we don't need to change the previous statement to apply the change

print(format(x, FORMAT_1) + SEPARATOR, format(x ** 2, FORMAT_2), format(math.sqrt(x), FORMAT_3))

The footer of the table

print("---------------------------------")

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Program 33.6

Run

https://repl.it/@AhmadTayebKAU/CPIT110Chapter3PrintTableB#main.py

Print a Table
Discussion

79

• Implementation A and Implementation B are both correct.

• However, Implementation B is better than Implementation A
because it requires fewer modifications on the code when you
want to change the formats of the columns and the values of x.

• In other words, Implementation B is flexible.

Program 33.6

Check Point
#4

80

Show the printout of the following statements:

•

•

•

•

print(format(57.467657, "9.3f"))

print(format(12345678.923, "9.1f"))

print(format(57.4, ".2f"))

print(format(57.4, "10.2f"))

12345678.9

57.468

57.40

57.40

3.6

Check Point
#5

81

Show the printout of the following statements:

•

•

•

print(format("Programming is fun", "25s"))

Programming is fun

print(format("Programming is fun", "<25s"))

Programming is fun

print(format("Programming is fun", ">25s"))

Programming is fun

3.6

End

82

▪ Test Questions

▪ Programming Exercises

Test Questions

83

• Do the test questions for this chapter online at
https://liveexample-ppe.pearsoncmg.com/selftest/selftestpy?chapter=3

https://liveexample-ppe.pearsoncmg.com/selftest/selftestpy?chapter=3

Programming Exercises

84

• Page 85 – 88:
◦ 3.1 - 3.5

◦ 3.8 - 3.9

◦ 3.11

• Lab #5

https://csu.kau.edu.sa/pages-cpit-110labsar.aspx

