
JKAU: Eng. Sci., vol. 15 no. 1, pp. 105-121 (1425 A.H./ 2004 A.D.)

105

Efficient Solution of Boolean Equations Using

Variable-Entered Karnaugh Maps

ALI MUHAMMAD ALI RUSHDI

Department of Electrical and Computer Engineering
King Abdulaziz University

P.O. Box 80204, Jeddah 21589, Saudi Arabia
arushdi@kaau.edu.sa

ABSTRACT. A new method for obtaining a compact subsumptive
general solution of a system of Boolean equations is presented.
The method relies on the use of the variable-entered Karnaugh
map (VEKM) to achieve successive elimination through
successive map folding. It also makes an artificial distinction
between don’t-care and can’t-happen conditions. Therefore, it is
highly efficient as it requires the construction of maps that are
both significantly fewer and significantly smaller than those
required by classical methods. Moreover, the method is applicable
to general Boolean equations and is not restricted to the two-
valued case. Details of the method are formally justified, carefully
explained and further demonstrated via an illustrative example.

1. Introduction

The topic of Boolean equations has been a hot topic of research for almost two
centuries and its importance can hardly be overestimated. Boolean-equation
solving permeates many areas of modern science such as logical design,
biology, grammars, chemistry, law, medicine, spectroscopy, and graph theory
[1]. Many important problems in operations research can be reduced to the
problem of solving a system of Boolean equations. A notable example is the
problem of an n-person coalition game with a domination relation between
different strategies [2]. The solutions of Boolean equations serve also as an

Ali Muhammad Ali Rushdi 106

important tool in the treatment of pseudo-Boolean equations and inequalities,
and their associated problems in integer linear programming [2].

The key step used in solving Boolean equations is that of deriving
eliminants: entities that can be readily represented on maps. Brown [1]
considered the possibility of using a Conventional Karnaugh Map (CKM) in
which the rows and columns are arranged according to a reflected binary code,
or using a Marquand diagram (also called Veitch chart) in which natural binary
order is used. Though CKMs are easier to construct and read than Marquand
diagrams, Brown [1] chose to employ Marquand diagrams to solve Boolean
equations since the rules for using them are easier to state than those for using
CKMs.

Tucker and Tapia [3.4] developed a new CKM method for solving two-

valued Boolean equations. Their method makes a clever distinction between
don’t-care and can’t-happen conditions, and hence requires significantly fewer
maps than a typical CKM method does. Though this method is presented
without proof, some intuitive understanding of the reason for its mappings is
given. Similarly to Brown [1], Tucker and Tapia [3,4] stated their rules in
cellwise tabular form.

Rushdi [5] developed yet another mapping method for obtaining a

subsumptive general solution of a system of Boolean equations. This method is
not restricted to the two-valued case and requires the construction of maps that
are significantly smaller than those required by existing procedures. This is
because it relies on the use of a more powerful map, namely the variable-
entered Karnaugh map (VEKM). The VEKM is an adaptation of the CKM that
retains most of its pictorial insight and effectively combines algebraic and
mapping techniques. Historically, the VEKM was developed to double the
variable-handling capability of the CKM [6]. Later, the VEKM was shown to
be the direct or natural map for finite Boolean algebras other than the bivalent
or 2-valued Boolean algebra (switching algebra) [1,5,7,8]. These algebras are
sometimes called ‘big’ Boolean algebras, and are useful and unavoidable, even
if unrecognizable, in many applications [1].

In the present work, we propose a combination of the method of Tucker

and Tapia [3,4] and that of Rushdi [5], i.e., we develop a mapping method that:
(a) distinguishes don’t-care and can’t-happen conditions and (b) employs the
VEKM to obtain a subsumptive general solution of a system of Boolean
equations. The proposed combined method is highly efficient, as it requires the
construction of maps that are both significantly fewer and significantly smaller
than those required by classical methods. The rules of using these maps are
easy to remember, as they are stated in a collective algebraic form. The

Efficient Solution of Boolean Equations ….

107

algebraic rules have an inherent nice regularity, and hence are preferable to the
earlier cellwise tabular ones that obscure such regularities. As an offshoot of
the present work, a formal proof of the basic concepts in Tucker and Tapia
[3,4] is given.

The organization of the rest of this short note is as follows. Section 2

reviews the concept of subsumptive general solutions of a Boolean system of
equations, while section 3 presents a simplified reformulation of the
constructions in section 2. This reformulation leads to efficient constructions of
subsumptive solutions that can use genuine VEKM representations or can use a
CKM or an algebraic representation, which are the two opposite degenerate
VEKM representations. An illustrative example follows in section 4 which
serves not only to demonstrate the method proposed herein, but also to show its
superiority to earlier methods in simplicity, efficiency, and compactness of
solution form. Section 5 is devoted to some concluding remarks.

2. Subsumptive General Solutions

This section is a review of the classical technique of constructing

subsumptive general solutions for a system of Boolean equations [1,5,9]. We
consider an n-variable Boolean system on a Boolean algebra B that is usually a
set of k, k ≥ 1, simultaneously asserted equations and/or inequalities. Such a
system is always reducible [1] to an equivalent single equation

f (X) = 0, (2.1)

where X = [X1, X2, …, Xn]TT is a vector of n components Xi, each

belonging to the Boolean carrier B. The symbol f in (2.1) denotes an n-variable
Boolean function f : Bn → B, whose eliminants fn (X1, X2, …, Xn), …, fi(X1
, X2, …, Xi-1, Xi), …, f2 (X1 , X2), f1(X1), f0 are constructed by setting fn = f
and using the recursion

 fi-1 (X1 , X2, …, Xi-1) = (fi /Xi) ∧ (fi / Xi), i = n ,n-1, …,1. (2.2)

The function fi-1, called the conjunctive eliminant of fi with respect to the

singleton {Xi}, is a conjunction of the two ratios or subfunctions

 fi /Xi = fi (X1 , X2, …, Xi-1, 0), (2.3a)

 fi / Xi = fi (X1 , X2, …, Xi-1, 1), (2.3b)

Ali Muhammad Ali Rushdi 108

obtained from fi by setting or restricting Xi in it to 0 and to 1 , respectively.
These two ratios will be denoted by fi (0) and fi(1), respectively. A
subsumptive general solution is produced by successive elimination of
variables, a technique transforming the problem (2.1) of solving a single
equation of n variables to that of solving n equations of one variable each. The
solution requires a separate consistency condition

 f0 = 0 , (2.4a)

plus expressing each of the pertinent variables as an interval of functions of

the preceding variables, namely, for i = 1, 2, …,n :

 si (X1 , X2, ..., Xi-1) ≤ Xi ≤ ti (X 1, X2, …, Xi-1), (2.4b)

where the si and ti functions are expressed as incompletely specified

Boolean functions (ISBFs) again in the interval form [1]

 fi (0) fi (1) ≤ si ≤ fi (0), (2.5a)

 fi (1) ≤ ti ≤ fi (0) ∨ fi (1). (2.5b)

The form of the general solution above allows all the particular solutions of

(2.1), and nothing else, to be generated as a tree. Such a generation is of a
modest computational complexity, and is performed only whenever needed. In
fact, spatial economy dictates that a solution be displayed in a compact general
form rather than as a list of particular solutions.

3. A Simplified Reformulation

In this section we reformulate the subsumptive general solution (2.4)-(2.5)

into a new form suitable for efficient computation. We note that the
subsumptive solution has two sources of specification incompleteness: (a)
each variable Xi is given as an interval of functions and (b) the bounding
functions si and ti are also given in interval form. The interval form for Xi in
(2.4b) can be rewritten in the don’t-care form [5]

 Xi = si ∨ d (si ti). (3.1)

Similarly, the interval forms for si and ti in (2.5) are rewritten in the don’t-

care forms

si = fi (0)fi (1) ∨ c (fi (0) fi (1)), (3.2a)

Efficient Solution of Boolean Equations ….

109

ti = fi (1) ∨ c (fi (0) fi (1)), (3.2b)

where the new type of don’t cares in (3.2) is labeled as "c" rather than "d" so as
to be distinguished from the earlier type in (3.1). The symbol "c" has been
particularly chosen so as to denote a can’t-happen condition, which is a special
case of don’t-care conditions. We will temporarily make an artificial
distinction between can’t-happen conditions and ordinary don’t-care
conditions. In this, we conform to the terminology of Tucker and Tapia [3,4]
who made such a distinction in their table/map work. The substitution of (3.2)
into (3.1) results in the following expression for Xi

Xi = fi(0)fi(1) ∨ c(fi(0) fi(1)) ∨ d (fi (0)fi (1)). (3.3)

Note that (3.3) expresses Xi as an ORing of three disjoint parts: the

(positively) asserted part fi(0)fi(1), the can’t-happen part c (fi (0) fi (1)) and
the don’t-care part d(fi (0)fi (1)). We stress that (3.3) is valid for a general
Boolean algebra and is not restricted to the 2-valued case. However, to
illustrate our results and demonstrate their correspondence with these of Tucker
and Tapia [3,4], we specialize (3.3) to the 2-valued Boolean algebra in Table 1
which summarizes the values that Xi takes for all possible combinations of
binary values for fi(0) and fi(1).

Table 1: The value of Xi in terms of those of fi(0) and fi(1) for the 2-valued case.

 fi(0) fi(1) Xi : Meaning
 1
 1
 0
 0

 1
 0
 1
 0

c can’t happen
1 (positively) asserted
0 (negatively) asserted
d don’t care

It is possible to argue that the three parts in (3.3) need not really be disjoint

since the asserted part can "creep" into the c and d parts [Note that 1 ∨ c = 1, 1
∨ d = 1], and that (3.3) can be rewritten in the simplified form

Xi = fi (0)fi (1) ∨ c (fi (0)) ∨ d (fi (1)). (3.4)

However, we will refrain from doing so at this stage as we will deliberately

maintain representations for the variables Xi, i = n, n-1, …, 2, 1, in the disjoint
form (3.3) and insist on our artificial distinction between the c and d conditions

Ali Muhammad Ali Rushdi 110

therein. Such an Xi representation contains all the information necessary for the
solution to proceed at its ith iteration, viz., it contains full information on the
functions si, ti and fi-1. The two bounding functions si and ti are easily recovered
from (3.3) as follows. In view of (3.2a), the lower bound si can be obtained
from the right hand side of (3.3) by setting d to 0. Moreover, the distinction
between c and d is not needed in the resulting expression of si, and hence c is
switched into d in that expression to yield

si = fi (0)fi (1) ∨ d (fi (0) fi (1))
= fi (0)fi (1) ∨ d (fi (0)), (3.5)

while the upper bound ti is obtained from the right hand side of (3.3) by setting
d to 1 and again switching c into d, viz.,

ti = fi (0)fi (1) ∨ d (fi (0) fi (1)) ∨ fi (0)fi (1)
 = fi (1) ∨ d (fi (0)). (3.6)

Finally, we observe that the can’t-happen part in (3.3), i.e. fi (0) fi (1) is

simply the next eliminant fi-1. This can’t-happen part can be expanded into its
two subfunctions fi-1(0) and fi-1(1) which are all we need to construct a
representation for the next variable Xi-1. We can proceed recursively to
generate each successor variable Xi-1 from its predecessor Xi for i = n-1, n-2,
…, 1. To construct a representation for the starting variable Xn, we need the
eliminant fn = f, which can be generated from a fictitious variable Xn+1 in the
form

Xn+1 = c (f (X)). (3.7)

Note that while the representation (3.3) involves three ANDing (logical

multiplication) operations, we need only to implement two of them. We
multiply fi(0) and fi(1) to form the c part fi(0) fi(1) needed for fi-1 and also
multiply fi(0) andfi(1) since this is the asserted part of si in (3.5). However, we
neither need to multiplyfi(0) and fi(1) nor to constructfi(0) in the first place.
The productfi(0)fi(1) is not needed for si, ti or fi-1 .

So far, we have considered a general representation for the Xi’s that can be

either purely algebraic, purely map (e.g., a CKM) or a mixture thereof (i.e., a
VEKM). Note that the natural pure map representation has the largest maps
among all VEKM representations while a purely algebraic representation has
the most complicated manipulations among all VEKM representations. Note
also that the natural pure map for a ‘big’ Boolean algebra has entries that
include constants other than the usual constants 0 and 1 of the 2-valued Boolean

Efficient Solution of Boolean Equations ….

111

algebra. Such a map can be called a CKM on its pertinent algebra, but is easier
to handle as a VEKM on the 2-valued Boolean algebra with the extra constants
(the ones other than 1 and 0) viewed as functions of entered "variables"
[1,5,7,8]. This means that while we have several choices for the 2-valued
Boolean algebra, we do not have much of a choice when handling ‘big’ Boolean
algebras in which case VEKMs seem to possess a clear advantage.

 If the pertinent Boolean algebra is 2-valued and the Xi representation is a

CKM, then the method of Tucker and Tapia [3,4] is recovered as a special case
of the current method. In this case, the map of a predecessor variable Xi+1 acts
as a generator map for the map of a successor variable Xi. The can’t-happen (c)
entries in the generator or Xi+1 map represent the cases when fi+1 (0) fi+1 (1) = fi
is asserted. The generator Xi+1 map is split into two halves: Xi = 0 (which is a
map for the subfunction fi(0) defining it as 1 for c entries and 0 otherwise) and
Xi = 1 (which is a map for the subfunction fi(1) again defining it as 1 for c
entries and 0 otherwise). Now, the Xi map is generated from the Xi+1 map by
eliminating the map variable Xi from the Xi+1 map and combining every two
cells in the Xi+1 map that share common values for all map variables other
than Xi itself. Such two cells for Xi = 0 and for Xi = 1 combine to give a single
cell in the Xi map. The entry in the combined cell depends on the entries in the
original cells, which can be either a 'c', or not. Note that when an entry is not a
'c', it is immaterial whether it is a '1', a '0' or a 'd', and can collectively be
denoted as a '*'. A 'c' ('*') entry in the Xi = 0 cell means that fi (0) is 1(0).
Similarly, a 'c' ('*') entry in the Xi = 1 cell means that fi (1) is 1(0). These latter
statements can be used to translate Table 1 into Table 2 which decides the
value of a cell in the Xi map in terms of the values of the corresponding two
cells in the Xi+1 or generator map. A table similar to Table 2 has earlier
appeared in Tucker and Tapia [3] but it was based only on some intuitive
understanding.

Table 2: The value of a cell in the Xi map in terms of the values of the corresponding two cells

in the generator map for the 2-valued case.

Value for the
Xi = 0 cell

in the Xi+1 map

Value for the
Xi = 1 cell

in the Xi+1 map

Value in the
corresponding cell

in the Xi map
c
c
*
*

c
*
c
*

c
1
0
d

Now, if the pertinent Boolean algebra is not restricted, and the sequence of

variables Xi has VEKM representations, it is straightforward to use the VEKM
of a predecessor variable Xi+1 as a generator map for the next variable Xi. The

Ali Muhammad Ali Rushdi 112

rule of converting the Xi+1 VEKM into the Xi VEKM depends on whether Xi is
a map variable or an entered variable for the Xi+1 VEKM and is shown in Fig.
1, which is simply a graphical translation of (3.3).

4. An illustrative example

Let us apply the present method in terms of a VEKM representation to find
the subsumptive general solution of an equation of the form f(X1, X2, X3) = 0,
where f is a Boolean function f = B3 → B where B is the Boolean carrier of
2**(22) = 24 = 16 elements constructed as all binary functions of a and b. These
16 elements have a partial order among themselves according to the inclusion
(≤) operator, and constitute a 4-dimensional hypercube representing a

Efficient Solution of Boolean Equations ….

113

complemented distributive lattice as shown in Fig. 2. Note that the input space
of f consists of 163 = 4096 combinations of X, but f is uniquely defined by the
values assigned to it on only 8 combinations of X, namely those belonging to
{0,1}3 . Let f be given by the formula

f = b X1 ∨ bX2 X3 ∨ bX1 X2 ∨ aX2 X3 ∨a X1 X2

∨ aX1 X2 ∨ ab X2 X3. (4.1)

This equation has been solved repeatedly by Brown [1], with his most
simplified solution being via his Marquand-diagram procedure. The first step
of this procedure is to expand f not only with respect to the 3 variables X1, X2,
and X3 but further with respect to the "constants" a and b thereby producing a
5-variable 32-cell Marquand diagram. This diagram is repeatedly folded to
obtain Marquand diagrams for the eliminants f3 = f, f2 , f1 and f0 . For i = 3, 2,
1 diagram entries for si and ti are produced in terms of diagram entries for fi in
a cellwise fashion. The functions si and ti (i = 3, 2, 1) in Marquand-diagram
form are not readily amenable to simplification or minimization.

Ali Muhammad Ali Rushdi 114

In our present procedure, however, we expand f only with respect to the
true variables X1, X2, and X3 , thereby representing f by the 8-cell VEKM in
Fig. 3 which has X1, X2, and X3 as map variables and has a and b as entered
"variables". Since a and b are actually constants, this VEKM is a natural map
for f. We switch the entries of this map into c entries and consider it a map for
a fictitious variable X4 as shown in Fig. 4(a). This new map is the first in a
series of generator VEKMs X4, X3, X2 and X1 given in Figs. 4(b)-4(d). The
entries of a VEKM Xi, i = 3, 2, 1 are deduced from the can’t-happen entries of
the predecessor or generator Xi+1 VEKM according to the transformation from
(a) to (c) in Fig. 1. Now, the VEKM for every si (ti), i = 3, 2, 1, is obtained
from that of the corresponding Xi with d set to 0(1) and c converted into d. The
si and ti VEKMs are equivalent to those obtained for the current example by
Rushdi [5], and can be used to construct minimal sum-of-products expressions
via the procedure of Rushdi and Al-Yahya [8]. Finally, the subsumptive
general solution for f = 0 is obtained as

a b = 0

0 ≤ X1 ≤ b
a X1 ≤ X2 ≤ b ∨ X1

a X1 ≤ X3 ≤ a ∨bX2 ∨ bX2 . (4.2)

The solution (4.2) is in its most simplified form, as verified from earlier

work by Brown [1], Rushdi [5], and Rudeanu [10]. For comparison purposes,
Fig. 5 shows the VEKMs of Fig. 4 expanded in CKM form, with the original
VEKM boundaries stressed as thick bold lines. The initial map of the fictitious

Efficient Solution of Boolean Equations ….

115

X4 variable is the CKM for f in (4.1) with 1’s replaced by c’s. The sequence of
maps for X3, X2, X1 in Fig. 5 is directly obtained via the rules in Table 2.

Ali Muhammad Ali Rushdi 116

Efficient Solution of Boolean Equations ….

117

It is interesting to note that the consistency conditionsa b = 0 restricts the
input space of X from 163 = 4096 combinations to only 83 = 512 combinations,
since the original lattice of B of 16 elements (Fig. 2) collapses to one of 8
elements only (Fig. 6). In fact, the 4-dimensional hypercube in Fig. 2 loses
one of its dimensions due to the cancellation of its atoma b, and hence reduces
to a 3-dimensional hypercube, or simply a cube. The general solution of (4.2)
can now be used to generate all particular solutions with the aid of the partial
order in Fig 6.

Table 3 explicitly lists all the particular solutions of the equation f = 0.

These solutions are all the valid solutions (and nothing else) produced
individually without any kind of overlapping or repetition. For each of these
solutions f can be shown to equal a b which is zero according to the
consistency condition. However, Table 3 is not the recommended form for a
solution representation since it details a large number of solutions and obscures
regularities in their form.

Ali Muhammad Ali Rushdi 118

 Table 3: Particular solutions equivalent to (4.2).

X1 X2 X3

X1 X2 X3

 0 0 a
 0 0 b
 0 b a
 0 b b
 0 b a ∨ b
 0 b 1
 ab 0 a
 ab 0 b
 ab b a
 ab b b
 ab b a ∨ b
 ab b 1
 ab ab a
 ab a a
 ab a a ∨ b
 a a 0
 a a a
 a a ab
 a a b
 a a ∨ b 0
 a a ∨ b a
 a a ∨ b ab
 a a ∨ b b
 a a ∨ b b
 a a ∨ b a ∨ b
 a a ∨ b a

 a a ∨ b 1
  b a 0
 b a a
 b a ab
 b a b
 b b 0
 b b a
 b a ∨ b 0
 b a ∨ b a
 b a ∨ b ab
 b a ∨ b b
 b a ∨ b b
 b a ∨ b a ∨ b
 b a ∨ b a
 b a ∨ b 1
 b 1 0
 b 1 a
 b 1 b
 b 1 a ∨ b

5. Conclusions

This paper presents an efficient manual method for obtaining the most

compact form of the subsumptive general solution of a system of Boolean
equations. The method is an effective combination of mapping and algebraic
methods (through its use of VEKM representations for Boolean functions and
variables) and employs a minimum number of constructions (through its
artificial distinction between don’t-care and can’t-happen conditions).
Throughout its work, the method keeps track only of a single-variable
representation that can have positively-asserted, don’t-care, can’t-happen or
negatively-asserted components that are functions of the constants of the
pertinent Boolean carrier. This single-variable representation leads to an
immediate construction of the minimal sum-of-product expressions for the

Efficient Solution of Boolean Equations ….

119

lower and upper bound on the present variable as well as to a generation of the
next variable representation. In addition to being highly economic, the present
method is not restricted to two-valued Boolean equations and is naturally
suitable for ‘big’ Boolean algebras.

The concepts and method developed herein can be utilized in various

application areas of Boolean equations [1,2,9,11,12]. In particular, an
automated version of the present Boolean-equation solver can be applied in the
simulation of gate-level logic. However, such an application must handle the
incompatibility between the lattice structure of ‘big’ Boolean algebras, which
are only partially ordered, and multi-valued logics, which are totally ordered
[13]. The ideas expressed herein can also be incorporated in the automated
solution of large systems of Boolean equations [11,14]. They can also be
extended to handle quadratic Boolean equations [15], Boolean ring equations
[9,16], and Boolean differential equations [17].

References

[1] Brown, F. M., Boolean Reasoning: The logic of Boolean Equations, Kluwer Academic

Publishers, Boston (1990).
[2] Hammer, P. L. and S. Rudeanu, Boolean Methods in Operations Research and Related

Areas, Springer Verlag, Berlin, Germany (1968).
[3] Tucker J. H., and M. A. Tapia, Using Karnaugh Maps to Solve Boolean Equations by

Successive Elimination, Proceedings of IEEE Southeastcon 92, Birmingham, AL, 2: 589-
592 (1992).

[4] Tucker, J. H. and M. A. Tapia, Solution of a Class of Boolean Equations. Proceedings of
IEEE Southeastcon 95, New York, NY, 1: 106-112 (1995).

[5] Rushdi, A. M., Using Variable-Entered Karnaugh Maps to Solve Boolean Equations,
International Journal of Computer Mathematics, 78 (1): 23-38 (2001).

[6] Rushdi, A. M., Improved Variable-Entered Karnaugh Map Procedures, Computers and
Electrical Engineering, 13 (1): 41-52 (1987).

[7] Rushdi, A. M. and H. A. Al-Yahya, A Boolean Minimization Procedure Using the
Variable-Entered Karnaugh Map and the Generalized Consensus Concept, International
Journal of Electronics, 87 (7): 769-794 (2000).

[8] Rushdi, A. M. and H. A. Al-Yahya, Further Improved Variable-Entered Karnaugh Map
Procedures for Obtaining the Irredundant Forms of an Incompletely-Specified Switching
Function, Journal of King Abdulaziz University: Engineering Sciences, 13 (1): 111-152
(2001).

[9] Rudeanu S., Boolean Functions and Equations, North-Holland Publishing Company &
American Elsevier, Amsterdam, the Netherlands (1974).

[10] Rudeanu S., Algebraic Methods versus Map Methods of Solving Boolean Equations,
International Journal of Computer Mathematics, 80 (7): 815-817 (2003).

[11] Crama, Y. and P. L. Hammer, Boolean Functions, E-book, Available at
http://www..sig.egss.ulg.ac.be/rogp/Crama/Publications/BookPage.html, Accessed on April
15, 2002.

[12] Bochmann, D., A. D. Zakrevskij and Ch. Posthoff, Boolesche Gleichungen: Theorie,
Anwendungen und Algorithmen (Boolean Equations: Theory, Applications and Algorithms)
Sammelband-Verlag, Berlin, Germany (1984).

Ali Muhammad Ali Rushdi 120

[13] Woods, S. and G. Casinovi, Multiple-Level Logic Simulation Algorithm, IEE Proceedings
on Computers and Digital Techniques, 148 (3):129-137 (2001).

[14] Woods, S. and G. Casinovi, Efficient Solution of Systems of Boolean Equations,
Proceedings of the 1996 IEEE/ACM International Conference on Computer-Aided Design,
542-546 (1996).

[15] Rudeanu S., On quadratic Boolean Equations, Fuzzy Sets and Systems, 75 (2): 209-213
(1995).

[16] Rudeanu S., Unique Solutions of Boolean Ring Equations, Discrete Mathematics, 122 (1-
3): 381-383 (1993).

[17] Serfati, M., Boolean Differential Equations, Discrete Mathematics, 146 (1-3): 235-246
(2003).

Efficient Solution of Boolean Equations ….

121

الحل السريع للمعادلات البولانية باستخدام خرائط
 حتوياتكارنوه متغيرة الم

 علي محمد علي رشدي

 قسم الهندسة الكهربائية وهندسة الحاسبات ، جامعة الملك عبد العزيز
 جدة ، الـمملكة العربية السعودية

 يتم تقديم طريقة جديدة للحصول على حل عام :المستخلص
وتعتمد الطريقة . احتوائي ملموم لنظام من المعادلات البولانية

) خ ك غ ح (رنوه متغيرة المحتويات على استعمال خريطة كا
كذلك . لتحقيق الحذف التتابعي من خلال الطي المتتابع للخريطة

ا بين اشتراطات انعدام الأهمية ا مصطنعًتفتعل الطريقة تمييزً
ومن ثم فإنها تتمتع بكفاءة عالية . واشتراطات امتناع الحدوث

حيث إنها تتطلب إنشاء خرائط تقل في العدد بوضوح كما
تصغر في الحجم بوضوح عن تلك التي تتطلبها الطرائق

 عن ذلك، يمكن تطبيق الطريقة على المعادلات وفضلاً. التقليدية
إن تفصيلات . البولانية العامة دون التقيد بالحالة ثنائية القيمة

الطريقة يتم تعليلها بصورة رصينة، كما يجري شرحها بعناية
 . ثة أمثلة توضيحيةعطى بيان لها من خلال ثلاومن ثم يُ

