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ABSTRACT. A new method for obtaining a compact subsumptive 
general solution of a system of Boolean equations is presented. 
The method relies on the use of the variable-entered Karnaugh 
map (VEKM) to achieve successive elimination through 
successive map folding. It also makes an artificial distinction 
between don’t-care and can’t-happen conditions. Therefore, it is 
highly efficient as it requires the construction of maps that are 
both significantly fewer and significantly smaller than those 
required by classical methods. Moreover, the method is applicable 
to general Boolean equations and is not restricted to the two-
valued case. Details of the method are formally justified, carefully 
explained and further demonstrated via an illustrative example. 
    

 
1. Introduction 

 
The topic of Boolean equations has been a hot topic of research for almost two 
centuries and its importance can hardly be overestimated. Boolean-equation 
solving permeates many areas of modern science such as logical design, 
biology, grammars, chemistry, law, medicine, spectroscopy, and graph theory 
[1]. Many important problems in operations research can be reduced to the 
problem of solving a system of Boolean equations. A notable example is the 
problem of an n-person coalition game with a domination relation between 
different strategies [2]. The solutions of Boolean equations serve also as an 
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important tool in the treatment of pseudo-Boolean equations and inequalities, 
and their associated problems in integer linear programming [2]. 

The key step used in solving Boolean equations is that of deriving 
eliminants: entities that can be readily represented on maps. Brown [1] 
considered the possibility of using a Conventional Karnaugh Map (CKM) in 
which the rows and columns are arranged according to a reflected binary code, 
or using a Marquand diagram (also called Veitch chart) in which natural binary 
order is used. Though CKMs are easier to construct and read than Marquand 
diagrams, Brown [1] chose to employ Marquand diagrams to solve Boolean 
equations since the rules for using them are easier to state than those for using 
CKMs. 

  
Tucker and Tapia [3.4] developed a new CKM method for solving two-

valued Boolean equations. Their method makes a clever distinction between 
don’t-care and can’t-happen conditions, and hence requires significantly fewer 
maps than a typical CKM method does. Though this method is presented 
without proof, some intuitive understanding of the reason for its mappings is 
given. Similarly to Brown [1], Tucker and Tapia [3,4] stated their rules in 
cellwise tabular form. 

 
Rushdi [5] developed yet another mapping method for obtaining a 

subsumptive general solution of a system of Boolean equations. This method is 
not restricted to the two-valued case and requires the construction of maps that 
are significantly smaller than those required by existing procedures. This is 
because it relies on the use of a more powerful map, namely the variable-
entered Karnaugh map (VEKM). The VEKM is an adaptation of the CKM that 
retains most of its pictorial insight and effectively combines algebraic and 
mapping techniques. Historically, the VEKM was developed to double the 
variable-handling capability of the CKM [6]. Later, the VEKM was shown to 
be the direct or natural map for finite Boolean algebras other than the bivalent 
or 2-valued Boolean algebra (switching algebra) [1,5,7,8]. These algebras are 
sometimes called ‘big’ Boolean algebras, and are useful and unavoidable, even 
if unrecognizable, in many applications [1]. 

 
In the present work, we propose a combination of the method of Tucker 

and Tapia [3,4] and that of Rushdi [5], i.e., we develop a mapping method that: 
(a) distinguishes don’t-care and can’t-happen conditions and (b) employs the 
VEKM to obtain a subsumptive general solution of a system of Boolean 
equations. The proposed combined method is highly efficient, as it requires the 
construction of maps that are both significantly fewer and significantly smaller 
than those required by classical methods. The rules of using these maps are 
easy to remember, as they are stated in a collective algebraic form. The 
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algebraic rules have an inherent nice regularity, and hence are preferable to the 
earlier cellwise tabular ones that obscure such regularities. As an offshoot of 
the present work, a formal proof of the basic concepts in Tucker and Tapia 
[3,4] is given. 

 
The organization of the rest of this short note is as follows. Section 2 

reviews the concept of subsumptive general solutions of a Boolean system of 
equations, while section 3 presents a simplified reformulation of the 
constructions in section 2. This reformulation leads to efficient constructions of 
subsumptive solutions that can use genuine VEKM representations or can use a 
CKM or an algebraic representation, which are the two opposite degenerate 
VEKM representations. An illustrative example follows in section 4 which 
serves not only to demonstrate the method proposed herein, but also to show its 
superiority to earlier methods in simplicity, efficiency, and compactness of 
solution form. Section 5 is devoted to some concluding remarks.  

 
 

2. Subsumptive General Solutions 
 
This section is a review of the classical technique of constructing 

subsumptive general solutions for a system of Boolean equations [1,5,9]. We 
consider an n-variable Boolean system on a Boolean algebra B that is usually a 
set of k, k ≥ 1, simultaneously asserted equations and/or inequalities. Such a 
system is always reducible [1] to an equivalent single equation 

 
f (X) = 0,                                                                                    (2.1) 

 
where X = [X1, X2, …, Xn]TT is a vector  of n components Xi, each 

belonging to the Boolean carrier B. The symbol f in (2.1) denotes an n-variable 
Boolean function   f : Bn  → B, whose eliminants  fn ( X1, X2, …, Xn), …, fi( X1 
, X2, …, Xi-1, Xi ), …, f2 (X1 , X2), f1( X1), f0     are constructed by setting  fn = f  
and using the recursion 

 
       fi-1 ( X1 , X2, …, Xi-1 ) = ( fi /Xi )  ∧ ( fi / Xi ),    i = n ,n-1, …,1.    (2.2) 
 
The function fi-1, called the conjunctive eliminant of fi with respect to the 

singleton {Xi}, is a conjunction of the two ratios or subfunctions 
 
         fi  /Xi  = fi ( X1 , X2, …, Xi-1, 0 ),                                                (2.3a) 

 
         fi  / Xi   = fi ( X1 , X2, …, Xi-1, 1 ),                                                (2.3b) 
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obtained from  fi  by setting or restricting Xi  in it to  0  and to  1 , respectively. 
These two ratios will be denoted by fi (0) and fi(1), respectively. A 
subsumptive general solution is produced by successive elimination of 
variables, a technique transforming the problem (2.1) of solving a single 
equation of n variables to that of solving n equations of one variable each. The 
solution requires a separate consistency condition 

 
 f0  = 0 ,                                                                                                  (2.4a) 

 
plus expressing each of the pertinent variables as an interval of functions of 

the preceding variables, namely, for i = 1, 2, …,n : 
 
     si (X1 , X2, ..., Xi-1 )  ≤    Xi   ≤  ti (X 1, X2, …, Xi-1 ),                       (2.4b) 

 
where the si and  ti functions are expressed as incompletely specified 

Boolean functions (ISBFs) again in the interval form [1] 
 

         fi (0) fi (1)     ≤    si    ≤   fi (0),                                                    (2.5a) 
 

                  fi (1)    ≤     ti    ≤   fi (0)   ∨  fi (1).                                   (2.5b) 
 
The form of the general solution above allows all the particular solutions of 

(2.1), and nothing else, to be generated as a tree. Such a generation is of a 
modest computational complexity, and is performed only whenever needed. In 
fact, spatial economy dictates that a solution be displayed in a compact general 
form rather than as a list of particular solutions. 

 
3. A Simplified Reformulation 

   
In this section we reformulate the subsumptive general solution (2.4)-(2.5) 

into a new form suitable for efficient computation. We note that the 
subsumptive solution has two sources of specification incompleteness:  (a) 
each variable Xi is given as an interval of functions and      (b) the bounding 
functions si and ti are also given in interval form. The interval form for Xi in 
(2.4b) can be rewritten in the don’t-care form [5] 

 
                Xi =  si  ∨  d (si  ti ).                                                               (3.1) 

 
Similarly, the interval forms for si and ti in (2.5) are rewritten in the don’t-

care forms  
 
si  =  fi (0)fi (1)    ∨    c ( fi (0)  fi (1) ),                                               (3.2a) 
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ti  =        fi (1)    ∨    c ( fi (0)  fi (1) ),                                                  (3.2b) 
 

where the new type of don’t cares in (3.2) is labeled as "c" rather than "d" so as 
to be distinguished from the earlier type in (3.1). The symbol "c" has been 
particularly chosen so as to denote a can’t-happen condition, which is a special 
case of don’t-care  conditions. We will temporarily make an artificial 
distinction between can’t-happen conditions and ordinary don’t-care 
conditions. In this, we conform to the terminology of Tucker and Tapia [3,4] 
who made such a distinction in their table/map work. The substitution of (3.2) 
into (3.1) results in the following expression for Xi  

 
Xi =  fi(0)fi(1) ∨ c( fi(0)  fi(1) ) ∨ d (fi (0)fi (1) ).                              (3.3) 
                               
 
Note that (3.3) expresses Xi as an ORing of three disjoint parts: the 

(positively) asserted part  fi(0)fi(1), the can’t-happen part  c ( fi (0) fi (1) ) and 
the don’t-care part d(fi (0)fi (1) ). We stress that (3.3) is valid for a general 
Boolean algebra and is not restricted to the 2-valued case. However, to 
illustrate our results and demonstrate their correspondence with these of Tucker 
and Tapia [3,4], we specialize (3.3) to the 2-valued Boolean algebra in Table 1 
which summarizes the values that Xi takes for all possible combinations of 
binary values for fi(0) and  fi(1).  
 
 

Table 1: The value of Xi in terms of those of  fi(0) and fi(1) for the 2-valued case. 
 

   fi(0)      fi(1)  Xi     :     Meaning 
     1 
     1 
     0 
     0  

      1 
      0 
      1 
      0 

c        can’t happen 
1         (positively) asserted 
0         (negatively) asserted 
d         don’t care 

            
     
It is possible to argue that the three parts in (3.3) need not really be disjoint 

since the asserted part can "creep" into the c and d parts [Note that 1 ∨  c = 1, 1  
∨  d = 1], and that (3.3) can be rewritten in the simplified form 

 
Xi =  fi (0)fi (1)    ∨   c ( fi (0) )   ∨  d (fi (1) ).                                    (3.4) 
 
However, we will refrain from doing so at this stage as we will deliberately 

maintain representations for the variables Xi, i = n, n-1, …, 2, 1, in the disjoint 
form (3.3) and insist on our artificial distinction between the c and d conditions 
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therein. Such an Xi representation contains all the information necessary for the 
solution to proceed at its ith iteration, viz., it contains full information on the 
functions si, ti and fi-1. The two bounding functions si and ti are easily recovered 
from (3.3) as follows. In view of (3.2a), the lower bound si can be obtained 
from the right hand side of  (3.3) by setting d to 0. Moreover, the distinction 
between c and d is not needed in the resulting expression of si, and hence c is 
switched into d in that expression to yield  

 
si =  fi (0)fi (1)    ∨    d (fi (0)  fi (1)) 
=  fi (0)fi (1)    ∨    d (fi (0)),                                                                  (3.5) 

 
while the upper bound ti is obtained from the right hand side of (3.3) by setting 
d to 1 and again switching c into d, viz., 

 
ti =  fi (0)fi (1)    ∨  d (fi (0)  fi (1))   ∨  fi (0)fi (1) 
   =      fi (1)       ∨        d (fi (0)).                                                            (3.6) 

 
Finally, we observe that the can’t-happen part in (3.3), i.e. fi (0) fi (1) is 

simply the next eliminant fi-1. This can’t-happen part can be expanded into its 
two subfunctions fi-1(0) and fi-1(1) which are all we need to construct a 
representation for the next variable Xi-1. We can proceed recursively to 
generate each successor variable Xi-1 from its predecessor Xi for i = n-1, n-2, 
…, 1. To construct a representation for the starting variable Xn, we need the 
eliminant fn = f, which can be generated from a fictitious variable Xn+1 in the 
form 

 
Xn+1  = c ( f (X) ).                                                                                   (3.7) 

 
Note that while the representation (3.3) involves three ANDing (logical 

multiplication) operations, we need only to implement two of them. We 
multiply fi(0) and fi(1) to form the c part fi(0) fi(1) needed for fi-1 and also 
multiply fi(0) andfi(1) since this is the asserted part of si in (3.5). However, we 
neither need to multiplyfi(0) and fi(1) nor to constructfi(0) in the first place. 
The productfi(0)fi(1) is not needed for si, ti or fi-1 . 

 
So far, we have considered a general representation for the Xi’s that can be 

either purely algebraic, purely map (e.g., a CKM) or a mixture thereof ( i.e., a 
VEKM). Note that the natural pure map representation has the largest maps 
among all VEKM representations while a purely algebraic representation has 
the most complicated manipulations among all VEKM representations. Note 
also that the natural pure map for a ‘big’ Boolean algebra has entries that 
include constants other than the usual constants 0 and 1 of the 2-valued Boolean 
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algebra. Such a map can be called a CKM on its pertinent algebra, but is easier 
to handle as a VEKM on the 2-valued Boolean algebra with the extra constants 
(the ones other than 1 and 0) viewed as functions of entered "variables" 
[1,5,7,8]. This means that while we have several choices for the 2-valued 
Boolean algebra, we do not have much of a choice when handling ‘big’ Boolean 
algebras in which case VEKMs seem to possess a clear advantage. 

 
 If the pertinent Boolean algebra is 2-valued and the Xi representation is a 

CKM, then the method of Tucker and Tapia [3,4] is recovered as a special case 
of the current method. In this case, the map of a predecessor variable Xi+1 acts 
as a generator map for the map of a successor variable Xi. The can’t-happen (c) 
entries in the generator or Xi+1 map represent the cases when fi+1 (0) fi+1 (1) = fi 
is asserted. The generator Xi+1  map is split into  two halves: Xi = 0 ( which is  a 
map for the subfunction fi(0) defining it as 1 for c entries and 0 otherwise) and  
Xi = 1 ( which is a map for the subfunction fi(1) again defining it as 1 for c 
entries and 0 otherwise). Now, the Xi map is generated from the Xi+1 map by 
eliminating the map variable Xi from the Xi+1 map and combining every two 
cells in the Xi+1 map that share common values for all map variables  other  
than Xi itself. Such two cells for Xi = 0 and for Xi = 1 combine to give a single 
cell in the Xi map. The entry in the combined cell depends on the entries in the 
original cells, which can be either a 'c', or not. Note that when an entry is not a 
'c', it is immaterial whether it is a '1',  a '0' or a 'd', and can collectively be 
denoted as a '*'. A 'c' ('*') entry in the Xi = 0 cell means that fi (0) is 1(0). 
Similarly, a 'c' ('*') entry in the Xi = 1 cell means that fi (1) is 1(0). These latter 
statements can be used to translate Table 1 into Table 2 which decides the 
value of a cell in the Xi map in terms of the values of the corresponding two 
cells in the Xi+1 or generator map. A table similar to Table 2 has earlier 
appeared in Tucker and Tapia [3] but it was based only on some intuitive 
understanding. 

 
Table  2:  The value of a cell in the Xi map in terms of the values of the corresponding two cells 

in the generator map for the 2-valued case. 
 

Value for the  
Xi = 0 cell 

in the Xi+1 map  

Value for the  
Xi = 1 cell 

in the Xi+1 map 

Value in the 
corresponding cell  

in the Xi map 
c 
c 
* 
* 

c 
* 
c 
* 

c 
1 
0 
d 

 
Now, if the pertinent Boolean algebra is not restricted, and the sequence of 

variables Xi has VEKM representations, it is straightforward to use the VEKM 
of a predecessor variable Xi+1 as a generator map for the next variable Xi. The 
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rule of converting the Xi+1 VEKM into the Xi VEKM depends on whether Xi is 
a map variable or an entered variable for the Xi+1 VEKM and is shown in Fig. 
1, which is simply a graphical translation of (3.3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 

4. An illustrative example 
 

Let us apply the present method in terms of a VEKM representation to find 
the subsumptive general solution of an equation of the form f(X1, X2, X3) = 0, 
where f is a Boolean function f = B3 → B where B is the Boolean carrier of 
2**(22) = 24 = 16 elements constructed as all binary functions of a and b. These 
16 elements have a partial order among themselves  according to  the inclusion 
( ≤ ) operator, and constitute a 4-dimensional hypercube representing a 
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complemented distributive lattice as shown in Fig. 2. Note that the input space 
of f consists of 163 = 4096 combinations of X, but f is uniquely defined by the 
values assigned to it on only 8 combinations of X, namely those belonging to 
{0,1}3 .  Let f be given by the formula  

 
f  =  b X1  ∨   bX2 X3  ∨ bX1 X2   ∨ aX2 X3   ∨a X1 X2 

∨ aX1 X2   ∨   ab X2 X3.                                                            (4.1) 
 

This equation has been solved repeatedly by Brown [1], with his most 
simplified solution being via his Marquand-diagram procedure. The first step 
of this procedure is to expand f not only with respect to the 3 variables X1, X2, 
and X3 but further with respect to the "constants" a and b thereby producing a 
5-variable 32-cell Marquand diagram. This diagram is repeatedly folded to 
obtain Marquand diagrams for the eliminants f3 = f, f2 , f1 and f0 .  For  i = 3, 2, 
1 diagram entries for si and ti are produced in terms of diagram entries for fi  in 
a cellwise fashion. The functions si and ti ( i = 3, 2, 1) in Marquand-diagram 
form are not readily amenable to simplification or minimization. 
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In our present procedure, however, we expand f only with respect to the 
true variables X1, X2, and X3 , thereby representing  f  by the 8-cell  VEKM  in  
Fig. 3 which has X1, X2, and X3 as map variables and has a and b as entered 
"variables". Since a and b are actually constants, this VEKM is a natural map 
for f. We switch the entries of this map into c entries and consider it a map for 
a fictitious variable X4 as shown in Fig. 4(a). This new map is the first in a 
series of generator VEKMs X4, X3, X2 and X1 given in Figs. 4(b)-4(d). The 
entries of a VEKM Xi, i = 3, 2, 1 are deduced from the can’t-happen entries of 
the predecessor or generator Xi+1 VEKM according to the transformation from 
(a) to (c) in Fig. 1. Now, the VEKM for every si (ti), i = 3, 2, 1, is obtained 
from that of the corresponding Xi with d set to 0(1) and c converted into d. The 
si and ti VEKMs are equivalent to those obtained for the current example by 
Rushdi [5], and can be used to construct minimal sum-of-products expressions 
via the procedure of Rushdi and Al-Yahya [8]. Finally, the subsumptive 
general solution for f = 0 is obtained as  

              
a  b     =     0 

0        ≤     X1     ≤    b 
a X1      ≤     X2     ≤      b  ∨  X1 

a X1    ≤     X3     ≤     a   ∨bX2  ∨  bX2 .                                (4.2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The solution (4.2) is in its most simplified form, as verified from earlier 

work by Brown [1], Rushdi [5], and Rudeanu [10]. For comparison purposes, 
Fig. 5 shows the VEKMs of Fig. 4 expanded in CKM form, with the original 
VEKM boundaries stressed as thick bold lines. The initial map of the fictitious 
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X4 variable is the CKM for f in (4.1) with 1’s replaced by c’s. The sequence of 
maps for X3, X2, X1 in Fig. 5 is directly obtained via the rules in Table 2. 
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It is interesting to note that the consistency conditionsa b = 0 restricts the 
input space of X from 163 = 4096 combinations to only 83 = 512 combinations, 
since the original lattice of B of 16 elements (Fig. 2) collapses to one of 8 
elements only (Fig. 6). In fact, the 4-dimensional hypercube in   Fig. 2 loses 
one of its dimensions due to the cancellation of its atoma b, and hence reduces 
to a 3-dimensional hypercube, or simply a cube. The general solution of (4.2) 
can now be used to generate all particular solutions with the aid of the partial 
order in Fig 6.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Table 3 explicitly lists all the particular solutions of the equation f = 0. 

These solutions are all the valid solutions (and nothing else) produced 
individually without any kind of overlapping or repetition. For each of these 
solutions f can be shown to equal a b which is zero according to the 
consistency condition. However, Table 3 is not the recommended form for a 
solution representation since it details a large number of solutions and obscures 
regularities in their form.  
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             Table 3:   Particular solutions equivalent to (4.2). 
 

 
X1         X2         X3  

 
X1         X2         X3 

   
     0            0          a      
     0            0          b 
     0            b          a  
     0            b          b  
     0            b          a ∨ b 
     0            b            1 
     ab        0           a 
     ab        0           b 
     ab        b           a 
     ab        b           b 
     ab        b           a ∨ b 
     ab        b             1  
     ab        ab        a 
     ab        a            a  
     ab        a            a ∨  b 
   a          a              0  
   a          a            a  
   a          a              ab  
   a          a            b 
   a          a  ∨ b      0 
   a          a  ∨ b    a  
   a          a  ∨ b      ab 
   a          a  ∨ b    b 
   a          a  ∨ b      b 
   a          a  ∨ b    a ∨ b 
   a          a  ∨ b      a 

 
   a          a  ∨ b      1 
   b          a              0 
   b          a            a 
   b          a             ab 
   b          a            b  
   b          b              0 
   b          b            a 
   b          a ∨ b        0   
   b          a ∨ b      a  
   b          a ∨ b       ab 
   b          a ∨ b      b 
   b          a ∨ b        b 
   b          a ∨ b   a ∨ b 
   b          a ∨ b        a  
   b          a ∨ b        1  
   b            1              0 
   b            1             a 
   b            1               b 
   b            1         a ∨ b 

 
 

5. Conclusions 
 
This paper presents an efficient manual method for obtaining the most 

compact form of the subsumptive general solution of a system of Boolean 
equations. The method is an effective combination of mapping and algebraic 
methods (through its use of VEKM representations for Boolean functions and 
variables) and employs a minimum number of constructions (through its 
artificial distinction between don’t-care and can’t-happen conditions). 
Throughout its work, the method keeps track only of a single-variable 
representation that can have positively-asserted, don’t-care, can’t-happen or 
negatively-asserted components that are functions of the constants of the 
pertinent Boolean carrier. This single-variable representation leads to an 
immediate construction of the minimal sum-of-product expressions for the 
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lower and upper bound on the present variable as well as to a generation of the 
next variable representation. In addition to being highly economic, the present 
method is not restricted to two-valued Boolean equations and is naturally 
suitable for ‘big’ Boolean algebras. 

 
The concepts and method developed herein can be utilized in various 

application areas of Boolean equations [1,2,9,11,12]. In particular, an 
automated version of the present Boolean-equation solver can be applied in the 
simulation of gate-level logic. However, such an application must handle the 
incompatibility between the lattice structure of ‘big’ Boolean algebras, which 
are only partially ordered, and multi-valued logics, which are totally ordered 
[13]. The ideas expressed herein can also be incorporated in the automated 
solution of large systems of Boolean equations [11,14]. They can also be 
extended to handle quadratic Boolean equations [15], Boolean ring equations 
[9,16], and Boolean differential equations [17]. 
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الحل السريع للمعادلات البولانية باستخدام خرائط 
 حتوياتكارنوه متغيرة الم

 
 

  علي محمد علي رشدي
 

  قسم الهندسة الكهربائية وهندسة الحاسبات ، جامعة الملك عبد العزيز
 جدة ، الـمملكة العربية السعودية

 
 

 يتم تقديم طريقة جديدة للحصول على حل عام :المستخلص 
وتعتمد الطريقة . احتوائي ملموم لنظام من المعادلات البولانية

) خ ك غ ح (رنوه متغيرة المحتويات على استعمال خريطة كا
كذلك . لتحقيق الحذف التتابعي من خلال الطي المتتابع للخريطة

ا بين اشتراطات انعدام الأهمية ا مصطنعًتفتعل الطريقة تمييزً
ومن ثم فإنها تتمتع بكفاءة عالية . واشتراطات امتناع الحدوث

حيث إنها تتطلب إنشاء خرائط تقل في العدد بوضوح كما 
تصغر في الحجم بوضوح عن تلك التي تتطلبها الطرائق 

 عن ذلك، يمكن تطبيق الطريقة على المعادلات وفضلاً. التقليدية
إن تفصيلات . البولانية العامة دون التقيد بالحالة ثنائية القيمة

الطريقة يتم تعليلها بصورة رصينة، كما يجري شرحها بعناية 
  . ثة أمثلة توضيحيةعطى بيان لها من خلال ثلاومن ثم يُ

  


