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ABSTRACT.  Using finite element analysis, damage factor (DF) for 
damaged plate structure is presented.  The damage factor (DF) is able to 
localize the damage severity in the plate by a clear “jump” at the location 
of the damage in plate. The magnitude of the damage factor (DF) 
presented here varies linearly with the exact damage measure (DM) 
imposed in the plate. A new intuitive mode dependent factor is introduced. 
The mode dependent factor α is to improve the damage factor (DF) to be 
able to quantify the severity of the damage in plate.   
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1. Introduction 
 

Structures are prone to damage during their service lives.  Damage is caused by 
factors such as corrosion, fatigue, impact and overloads. Structural damage 
causes deviations of geometric or material properties from nominal or baseline 
values. For the sake of safety, reliability and operational life, it is essential to 
monitor the health status of structural systems. To this end the availability of 
suitable techniques for nondestructive damage detection in aerospace, civil and 
mechanical engineering structures are essential. Experimental modal analysis 
has become an increasingly accepted method for determining the overall health 
of a structure. It uses parameters based on differences of measured modal 
properties from baseline or nominal values to identify the location of damage.     
Until recently structural damage identification efforts were focused on damage 
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detection by spotting locations of reduced natural frequency. Thus Adams et al. 
[1] used the decrease in natural frequencies and increase in damping to detect 
cracks in fiber-reinforced plastics. They developed a theoretical model to 
predict the damage and its location based on receptance analysis. The analysis 
was done by using axial modes of vibration, and it is valid for structures which 
can be treated as one-dimensional.  
 

Vandiver [2] and Loland et al. [3] used the same principle to detect damage in 
offshore structures. From relative changes in the natural frequencies of different 
modes, Loland et al. [3] reported that they could predict the location of the 
damage. They demonstrated the use of their technique on oil drilling platforms 
in the North Sea. Cawley et al. [4] employed sensitivity analysis to deduce the 
location of damage in two-dimensional structures, based on a finite element 
analysis method. Flexural modes of vibration were used in this case. The 
method was applied to the case of a flat plate with the assumption that the 
modulus of elasticity in the damage area becomes equal to zero. For each 
element of the model, the sensitivity to the change was evaluated. The result of 
the analysis agreed well with the experimental results. The drawback of this 
method was that a large amount of computation needs to be performed 
subsequent to data collection to predict the location of the damage.  

 
Silva et al. [5] performed extensive experimental dynamic analyses of free-

free beams for the prediction of location and depth of cracks in straight beams. 
Cracks were simulated by cuts made using a very thin cutting tool, and real 
cracks were obtained by means of a three-point-bending fatigue technique. 
Variation in frequency tended to be higher in cracked beams than in slotted 
ones. Ostachowicz et al. [6] studied the effect of two open cracks on the natural 
frequencies of a cantilever beam. This was done numerically with some success.  

 
Recently, investigators discovered that variations in mode shape curvature 

are more sensitive to damage than the reduction in natural frequency. Thus 
Sanders et al. [7] developed a theory to detect and locate damage in structures 
made of fiber-reinforced composites in which they used modal sensitivity 
equations in conjunction with internal-state  variable  constitutive  theory. Choi 
et al. [8] compared the results of two damage detection techniques in a 
computer-simulated 2-D plate experiment. The first method is the Local 
Compliance Method, which is derived from classical plate theory. The second 
method is the Modal Strain Energy method, which is derived using expression 
for strain energy of a thin plate. The authors reported that the performance of 
the Local Compliance Method had more inherent noise because of fourth order 
numerical differentiation of data and other aspects of its numerical methods.  

 
Petro et al. [9] tested a free-free cantilever beam using modal strain energy 
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techniques and reported satisfactory results in damage identification. The beam 
was tested without damage, and then tested after damage was introduced. An 
'intuitive' damage parameter called the Strain Energy Damage Index (SEDI) 
was coined.  SEDI measured relative modal strain energy changes due to 
damage, based on one-dimensional static beam mechanics. This technique 
required numerically differentiating modal test data twice to obtain the 
curvature of the mode shape and then numerically integrating to find the strain 
energy variation along the beam.  In spite of the potential error during 
numerical analysis and difficulties posed by noise, this effort was reported to 
furnish satisfactory results in locating the damage.  The SEDI parameter 
exhibited a jump where damage was introduced. It did not, however, serve to 
assess the severity of the damage.  

 
Osegueda et al. [10] defined a new modal strain energy parameter, the Strain 

Energy Damage Index 2 (SEDI2). To this end a set of four double cantilever 
beam specimens with damage in various locations was tested, with varying 
levels of success. Meza et al. [11] implemented Modal Strain Energy Techniques 
and a scanning laser vibrometer to test a DC-9 aircraft forward fuselage for 
different artificially induced damage scenarios. These tests also had varying 
degrees of success. In some modes, the correct damaged area was indicated and 
in other modes an incorrect area was indicated. These investigators then 
averaged all strain energy differences from all different modes, and claimed 
success in isolating the damage.  

 
Carrasco et al. [12,13] used Modal Strain Energy Techniques to identify 

damage in a relatively complicated truss structure with several types of damage 
scenarios. This effort weighted the strain energy differences in elements of the 
finite element model in proportion to the strain energy distribution in the 
undamaged case. Noise effects were compensated by assigning large weights to 
the sensitive elements and small weights to the insensitive elements. They 
reported varying levels of success. Cornwell et al. [14,15] applied Modal Strain 
Energy Techniques for beam-like structures and plate like structures. 
Theoretical development of the Modal Strain Energy Technique for each case 
(beam and plate) was presented. It investigated various degrees of damage. The 
study had varying degrees of success depending on the different combinations 
of parameters that are varied.  

 
Gawronski et al. [16] used modal and sensor norms to determine damage 

locations. Their approach investigated the localization of damaged elements of a 
structure. Nicholson, and Alnefaie [17] introduced a new damage sensitive 
parameter called the Modal Moment Index (MMI). It uses the difference in the 
modal strain energies of the corresponding undamaged and damaged elements, 
but assumes that the “modal moment” is unaffected by damage. It is 
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successfully applied for the beam structures. Pai et al. [18] studied the boundary 
effect detection method for pinpointing locations of small damages in beams 
using operational deflection shapes measured by a scanning laser vibrometer. 
Ray et al. [19] demonstrated the concept of sensitivity enhancing control to aid in 
damage detection in smart structures through both experimental and simulation 
evaluation. They implemented state estimate feedback methods using strain 
measurements along the structure.  

 
Hu et al. [20] developed identification algorithms for assessing structural 

damages using modal test data. Kessler et al. [21] used a frequency response 
function method for detecting a small damage in a simple composite structure. 
Recently, Abdo, and Hori [22] presented a numerical study for the establishing of 
relationships between damage characteristics and changes in dynamic properties 
of a structure. They proposed that the rotation of mode shape has the 
characteristic of localization at the damaged region.  They reported that this 
technique is capable of locating multiple damage locations with different sizes.  
 

In what follows, a damage factor (DF) to localize and quantify the damage 
in plate is introduced. It is shown that the damage factor (DF) not only exhibits 
a sharp jump at the location of damage, but that its magnitude varies linearly 
with the damage measure (DM). Eventually, the damage factor (DF) is further 
improved by introducing a mode dependent factor α.  
 

2. Analysis 
 

A cantilever plate is modeled using 100 rectangular elements as shown in 
Figure (1). We suppose that damage primarily affects the average elastic 
modulus in the elements, with minimal effects on the cross-section or the mass 
density. The average elastic moduli before and after damage are E and E*. A 
pointwise damage measure (DM) is now introduced as  

 

D
DDDM

∗−
=                                                       (1) 

Where D is the element plate stiffness given by  
 

)ν(
EhD 2

3

112 −
=  (2) 

 
Then simulated damage is imposed in element (46) as a relative decrease in 
stiffness (i.e. DM from 20% to 80% at element 46).  For example if the damage 
measure DM is 80% at element 46 then 
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Fig. 1. Model of the Cantilever Plate of 100 Elements with one damaged element. 
 
 
 

D
DD ∗−

=8.0                                                              (3) 

 
It means that the stiffness of the damaged element 46 is 20% of the undamaged 
element which is given by 
 

DD ∗=∗ 2.0                                                                (4) 
 

The material of the plate used in the finite element simulation is assumed to 
be Aluminum 6061 sheet. The plate dimensions are 600 mm length, 600 mm 
width and 3mm thickness. The plate modulus of elasticity is E = 70 x 103 MPa 
and the mass density ρ = 2710 kg /m3. 
 
2.1 The Modal Strain Energy of a Plate-Like Structure 

 
The strain energy of the plate is 
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where D is the plate stiffness, h is the plate thickness and ν is the Poisson’s 
ratio. 

 
For the ith mode shape Φi(x,y) the modal strain energy associated with that 

mode shape is 
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Referring to Figure (2), if the plate is divided into Nx sub-divisions in the x 
direction and Ny sub-divisions in the y direction, then the modal strain energy of 
sub-region jk (plate element) for ith mode is given by  
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In matrix form  
 

{ } [ ]{ }eie
T

eiei δKδ
2
1U =                                              (8) 

 
where {δei} is a (1 x 12) vector which contains the nodal displacements and the 
rotations about the x and y  axes for each node of the plate element, at the ith 
mode. 

0 

b k+1 

b k 

b 

a j+1 aj a 

Nx , Ny

Fig. 2. A schematic of a plate’s sub-regions. 
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2.2 The Finite Element Model of a Plate-Like Structure 
 

Suppose that w(x,y) is interpolated by expressions of the form 
 

( ) ( )∑
=

=
n

j
jj x,yΨx,yw

1
δ  (9) 

 
where δj denote the nodal values of w and its derivatives, and Ψj (x,y) are 
Hermite interpolation functions [23]. Figure (1) shows the finite element mesh of 
the cantilevered plate model in which a rectangular plate element is used. The 
plate element has four nodes and each node has three degrees of freedom (w, θx, 
θy) as shown in Figure (3). 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Now the finite element model in matrix form is 
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Fig. 3. Plate Element. 
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Here Mn and Vn are the edge loads, Io = ρ h, and I2 = ρh3/12. For natural 
vibration, the eigenvalue problem is given by 
 

[ ] [ ]( ) { } { }0MωK o
e2

i
e =− δ                                            (15) 

 
After solving the eigenvalue problem to obtain the eigenvalues and the 

eigenvectors the modal strain energies for each element at the ith mode is 
computed using equation (8). 
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2
1
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2.3 The Damage Factor (DF) of Plate Structure 

 
A cantilever plate is modeled using 100 rectangular elements. The modal 

strain energy of each element at the ith mode is calculated before damage by 
equation (8) 

 

{ } [ ]{ }eie
T

eiei δKδU
2
1

=    

 
Then simulated damage is introduced in element (46) as a relative decrease 

in stiffness (i.e. as D from 20% to 80%). The modal strain energy of each 
element at the ith mode is calculated after the damage is imposed by  

 

{ } [ ]{ }∗∗∗ = eie
T

eiei δKδ
2
1U                                           (16) 

 
where { }∗

eiδ  is a (1 x 12) damage vector which contains the damage nodal 
displacements and the damage rotations about the x and y axes for each node of 
the plate element, at the ith mode. 
 

Then the damage factor DF [17] is computed for each element at the ith mode 
for modes one through six as 
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Eventually, the improved damage factor (IDF) is computed for each 

element at the ith mode for modes one through six as 
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where α is the mode-dependent factor. 
 
OR 

 
Improved Damage Factor = mode-dependent factor * Damage factor  

 
Each mode of the plate  has a coresponding damage factor (DF). Obviously, 

the relationship between the damage factor(DF) and the damage measure (DM) 
is linear. Accordingly, the mode dependent factor α is chosen in such away that 
the computed damage factor(DF) is closely related to the damage measure 
(DM). This mode dependent factor α is different from mode to mode. In a future 
work the damage factor(DF) (21) can be modified to obtain a fixed mode 
dependent facor α. 

 
3. Results  

 
The cantilever plate is modeled using 100 rectangular elements. The modal 

strain energies for each element are calculated before damage; then simulated 
damage is introduced in element (46) as a relative decrease in stiffness (i.e. 
damage measure (DM) from 20% to 80%). The damage factor (DF) of each 
element is calculated for modes one through six. Figures (4) through (9) shows 
a plot of the damage factor (DF) using damage measure (DM) = 20%. In these 
Figures (4) through (9) the z - axes represents the damage factor (DF) at each 
element, the x – axes and the y - axes represents the location of the center of 
each element of the plate. 

 
Figure (10) shows the damage factor (DF) at element 46 for modes one 

through six versus the imposed damage measure (DM) at element 46. Figure 
(11) shows the improved damage factor (IDF) at element 46 for modes one 
through six versus the imposed damage measure (DM) at element 46. The 
damage factor (DF) is improved by an “intuitive” mode-dependent factor α 
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multiplied by the damage factor (DF) at element 46. The linear dependence on 
damage is considered between the damage factor (DF) and damage measure 
(DM). 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Damage factor at each element of the plate for the first mode. 
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Fig. 5. Damage factor at each element of the plate for the second mode. 
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Fig. 6. Damage factor at each element of the plate for the third mode. 
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Fig.  8. Damage factor at each element of the plate for the fifth mode. 
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Fig. 9. Damage factor at each element of the plate for the sixth mode.
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Fig. 10. Damage factor at the damaged element 46 (20% - 80%) of the plate 
for modes one through six.
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Fig. 11. Improved Damage factor at the damaged element 46 (20% - 80%) of the 
plate for modes one through six.



K. A. Alnefaie 58 

4. Conclusion  
 

Finite element simulations on damaged plate structures are presented. The 
damage factor (DF) for damaged plate proves to be closely related to the level 
of damage measured by a relative modulus decrease, and it jumps sharply at the 
damage site. Damage factor (DF) shows a promising damage assessment factor 
in plate structures. Although, damaged is localized by the damage factor (DF) its 
value is related to the damage measure through a linear relationship between the 
damage factor (DF) and the damage measure (DM). Eventually, the damage factor 
(DF) is improved by a mode-dependent factor α. In a future work the damage 
factor(DF) (21) can be modified to obtain a fixed mode dependent facor α. 
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Nomenclature: 
A  cross-sectional area 

      D  bending stiffness 
e  element index 
E  elastic modulus 
f  consistent force 
I  bending moment of area 
[K e ] global stiffness matrix 
[Ke  ] Element stiffness matrix 
[M] consistent mass matrix 
M  moment 
U  strain energy 
V  also shear force 
t  thickness 
w  z-displacement 
x,y  coordinates 
ν                Poisson's ratio 
ρ      mass density 
Φ j  jth        eigenvector, mode shape 
δ  nodal displacements 
Ψ               Hermite interpolation function 
ω               natural frequency 
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طريقة العناصر  باستخداممعامل الأعطال في الصفائح الهيكلية 
  المنتهية

  
 

  النفيعي عبد االلهخالد

  جامعة الملك عبدالعزيز, كلية الهندسة ، قسم الهندسة الميكانيكية
  المملكة العربية السعودية, جده

  
 

تم عرض معامل الأعطال للصفائح الهيكلية باستخدام  :المستخلص
تشاف لقد أثبت معامل الأعطال إمكانية اك. تحليل العناصر المنتهية 

إن قيمة معامل الأعطال الموضحة . وتحديد مكان العطل في الصفائح 
في هذا العرض تتغير تغيرًا خطيًا مع القيمة الحقيقية للعطل في 

أيضًا تم عرض معامل أعطال آخر يعتمد على شكل اهتزاز . الصفائح
ل في  الصفائح  لتحسين معامل الأعطال السابق لتحديد مقدار العط

  .الصفائح الهيكلية
  
  
  
 


