
Chapter 5
Loops
CPIT 110 (Problem-Solving and Programming)

Version 1.0

Sections

• 5.1. Motivations

• 5.2. The while Loop

• 5.3. The for Loop

• 5.4. Nested Loops

• 5.5. Minimizing Numerical Errors

• 5.6. Case Studies

• 5.7. Keywords break and continue

• 5.8. Case Study: Displaying Prime Numbers

2Programs Check Points

Programs

• Program 1: Subtraction Quiz

• Program 2: Guessing Game

• Program 3: Multiple Subtraction Quiz

• Program 4: Advanced Multiple Subtraction Quiz

• Program 5: Sentinel Value

• Program 6: Multiplication Table

• Program 7: Finding the GCD

• Program 8: Predicting The Future Tuition

• Program 9: Prime Number

3

Check Points

• Section 5.2
◦ #1

◦ #2

◦ #3

◦ #4

• Section 5.3
◦ #5

◦ #6

◦ #7

◦ #8

◦ #9

• Section 5.4
◦ #10

◦ #11

◦ #12

◦ #13

◦ #14

◦ #15

◦ #16

• Section 5.7
◦ #17

◦ #18

◦ #19

◦ #20

◦ #21

◦ #22

4

Objectives

• To write programs for executing statements repeatedly by using a while loop (5.2).

• To develop loops following the loop design strategy (5.2.1-5.2.3).

• To control a loop with the user’s confirmation (5.2.4).

• To control a loop with a sentinel value (5.2.5).

• To use for loops to implement counter-controlled loops (5.3).

• To write nested loops (5.4).

• To learn the techniques for minimizing numerical errors (5.5).

• To learn loops from a variety of examples (GCD, FutureTuition, MonteCarloSimulation,
PrimeNumber) (5.6, 5.8).

• To implement program control with break and continue (5.7).

5

5.1. Motivations

▪ Loops

6

Motivations

• Suppose that you need to display a string (e.g., Programming is
fun!) 100 times.

• It would be tedious to type the statement 100 times:

• So, how do you solve this problem?

print("Programming is fun!")

print("Programming is fun!")

print("Programming is fun!")

...

print("Programming is fun!")

print("Programming is fun!")

print("Programming is fun!")

1

2

3

...

98

99

100

100
times

75.1

Motivations

• Solution:
◦ Python provides a powerful construct called a loop.

◦ A loop controls how many times an operation (or a sequence of
operations) is performed.

◦ By using a loop statement, you don’t have to code the print
statement a hundred times.

◦ You simply tell the computer to display a string that number of
times.

◦ The loop statement can be written as follows:

count = 0

while count < 100:

print("Programming is fun!")

count = count + 1

1

2

3

4

The loop statement

85.1

Motivations

• Solution:

• Details:
◦ The variable count is initially 0.

◦ The loop checks whether count < 100 is True.

▪ If so, the loop body is executed.
▪ "Programming is fun!" is printed.

▪ Then, count is incremented by 1 (count = count + 1).

◦ When count < 100 is False, the loop will terminate

▪ and the next statement after the loop statement is executed.

count = 0

while count < 100:

print("Programming is fun!")

count = count + 1

1

2

3

4
The loop body

95.1

Loops

• A loop is a construct that controls the repeated execution of a
block of statements.

• The concept of looping is fundamental to programming.

• Python provides two types of loop statements:
◦ while loops
▪ The while loops is a condition-controlled loop.

▪ it is controlled by a True/False condition.

◦ for loops
▪ The for loop is a count-controlled loop.

▪ It repeats a specified number of times.

105.1

5.2. The while Loop

▪ Trace while Loop

▪ Infinite Loop

▪ Program 1: Subtraction Quiz

▪ Program 2: Guessing Game

▪ Loop Design Strategies

▪ Program 3: Multiple Subtraction Quiz

▪ Program 4: Advanced Multiple Subtraction Quiz

▪ Program 5: Sentinel Value

▪ Check Point #1 - #4
11

The while Loop

• A while loop executes statements repeatedly as long as a
condition remains true.

• The syntax for the while loop is:

while loop-continuation-condition:

Loop body

Statement(s)

◦ The "loop body" is the part that
contains the repeated statements.

◦ A one-time execution of the loop
body is called an iteration.
▪ an iteration of the loop

125.2

The while Loop

• The syntax for the while loop is:

• Each loop contains a loop-continuation-condition.

• This is a Boolean expression that controls the execution of the
loop body.

• This expression is evaluated at each iteration.
◦ If the result is True, the loop body is executed

◦ If it is False, the entire loop will terminate
▪ Program control goes to the next statement after the loop.

while loop-continuation-condition:

Loop body

Statement(s)

135.2

The while Loop

• The continuation condition is count < 100
◦ If True, the loop continues.

◦ If False, the loop will terminate.

• This type of loop is called a counter-
controlled loop.

count = 0

while count < 100:

print("Programming is fun!")

count = count + 1

1

2

3

4

loop-continuation-condition

loop body

• The loop that displays Programming is fun! 100 times is an
example of a while loop.

145.2

Trace while Loop

count = 0

while count < 2:

print("Programming is fun!")

count = count + 1

print("Done")

1

2

3

4

5

Initialize count

0count →

155.2 1 of 9

count = 0

while count < 2:

print("Programming is fun!")

count = count + 1

print("Done")

1

2

3

4

5

Trace while Loop

(count < 2) is True

0count →

165.2 2 of 9

count = 0

while count < 2:

print("Programming is fun!")

count = count + 1

print("Done")

1

2

3

4

5

Trace while Loop

Print Programming is
fun!

0count →

Programming is fun!

175.2 3 of 9

count = 0

while count < 2:

print("Programming is fun!")

count = count + 1

print("Done")

1

2

3

4

5

Trace while Loop

Increase count by 1
count is 1 now

1count →

Programming is fun!

185.2 4 of 9

count = 0

while count < 2:

print("Programming is fun!")

count = count + 1

print("Done")

1

2

3

4

5

Trace while Loop

(count < 2) is still True
since count is 1

1count →

Programming is fun!

195.2 5 of 9

count = 0

while count < 2:

print("Programming is fun!")

count = count + 1

print("Done")

1

2

3

4

5

Trace while Loop

Print Programming is
fun!

1count →

Programming is fun!

Programming is fun!

205.2 6 of 9

count = 0

while count < 2:

print("Programming is fun!")

count = count + 1

print("Done")

1

2

3

4

5

Trace while Loop

Increase count by 1
count is 2 now

2count →

Programming is fun!

Programming is fun!

215.2 7 of 9

count = 0

while count < 2:

print("Programming is fun!")

count = count + 1

print("Done")

1

2

3

4

5

Trace while Loop

(count < 2) is False
since count is 2 now

2count →

Programming is fun!

Programming is fun!

225.2 8 of 9

count = 0

while count < 2:

print("Programming is fun!")

count = count + 1

print("Done")

1

2

3

4

5

Trace while Loop

The loop exits. Execute
the next statement

after the loop.

Print Done

2count →

Programming is fun!

Programming is fun!

Done

235.2 9 of 9

The while Loop

• Here is another example illustrating how a loop works:

• Details:
◦ if i < 10 is True, the program adds i to sum.

◦ The variable i is initially set to 1.
▪ Then it is incremented to 2, 3, and so on, up to 10.

◦ When i is 10, i < 10 is False, and the loop exits.

◦ So the sum is 1 + 2 + 3 + … + 9 = 45.

sum = 0

i = 1

while i < 10:

sum = sum + i

i = i + 1

print("sum is", sum) # sum is 45

1

2

3

4

5

6

245.2

Infinite Loop

• Suppose the loop is mistakenly written as follows:

• Details:
◦ Note that the entire loop body must be indented inside the loop.

◦ Here the statement i = i + 1 is not in the loop body.

◦ This loop is infinite, because i is always 1 and i < 10 will always be
True.

sum = 0

i = 1

while i < 10:

sum = sum + i

i = i + 1

print("sum is", sum) # sum is 45

1

2

3

4

5

6

255.2

Note

• Make sure that the loop-continuation-condition eventually
becomes False.

◦ So that the loop will terminate.

• A common programming error involves infinite loops.
◦ The loop runs forever.

• If your program takes an unusual long time to run and does not
stop, it may have an infinite loop.

• In PyCharm, click the small in the bottom
left corner.

◦ This will stop the execution of the program.

265.2

Caution

• New programmers often make the mistake of executing a loop one
extra time or one less time.

• This kind of mistake is commonly known as the off-by-one error.

• For example:

• This displays "Programming is fun!" 101 times.

• Why?
◦ count starts at 0, which means it should go until count < 100.

◦ If you want to iterate until count <= 100, then start count at 1.

count = 0

while count <= 100:

print("Programming is fun!")

print(count)

count = count + 1

1

2

3

4

5

275.2

Subtraction Quiz
Program 1

Remember we wrote a program, in Chapter 4 (Program 3), to
generate two numbers randomly and then ask the user for the
answer of number1 - number2. Now, we rewrite this program to
let the user repeatedly enter a new answer until it is correct.

What is 4 - 3? 4 <Enter>

Wrong answer. Try again. What is 4 - 3? 5 <Enter>

Wrong answer. Try again. What is 4 - 3? 1 <Enter>

You got it!

285.2 Program 1

Subtraction Quiz
Phase 1: Problem-solving

Design your algorithm:

1. Generate two single-digit integers for number1 and number2.
▪ Example: number1 = 4 and number2 = 3

2. If number1 < number2, swap number1 with number2.
▪ Example: make number1 = 3 and number2 = 4

3. Ask the user to answer a question (answer)
▪ Example: “What is 4 - 3 ?”

4. Make a while loop:
▪ Condition of the loop is if the answer is wrong (number1 - number2 != answer)

▪ If the answer is wrong, we should:
➢ Ask the user to answer the question (answer) again.

5. Once the answer is finally correct:
▪ Exit the loop.

▪ Print "You got it!"

295.2 Program 1

Subtraction Quiz
Phase 2: Implementation

LISTING 5.1 RepeatSubtractionQuiz.py

import random

1. Generate two random single-digit integers

number1 = random.randint(0, 9)

number2 = random.randint(0, 9)

2. If number1 < number2, swap number1 with number2

if number1 < number2:

number1, number2 = number2, number1

3. Prompt the student to answer What is number1 - number2?

answer = eval(input("What is " + str(number1) + " – "

+ str(number2) + "? "))

4. Repeatedly ask the user the question until it is correct

while number1 - number2 != answer:

answer = eval(input("Wrong answer. Try again. What is "

+ str(number1) + " - " + str(number2) + "? "))

5. Print the answer is correct

print("You got it!")

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

305.2 Program 1

Subtraction Quiz
Example Runs of The Program

What is 8 - 1? 7 <Enter>

You got it!

What is 6 - 3? 1 <Enter>

Wrong answer. Try again. What is 6 - 3? 2 <Enter>

Wrong answer. Try again. What is 6 - 3? 4 <Enter>

Wrong answer. Try again. What is 6 - 3? 3 <Enter>

You got it!

What is 7 - 4? 99 <Enter>

Wrong answer. Try again. What is 7 - 4? 5 <Enter>

Wrong answer. Try again. What is 7 - 4? 9 <Enter>

Wrong answer. Try again. What is 7 - 4? 8 <Enter>

Wrong answer. Try again. What is 7 - 4? 7 <Enter>

Wrong answer. Try again. What is 7 - 4? 3 <Enter>

You got it!

315.2 Program 1

Guessing Game
Program 2

Write a program that randomly generates a number between 0
and 100, inclusive. The program will repeatedly ask the user to
guess the number until the user gets the number correct. At each
wrong answer, the program tells the user if the guess is too low
or too high.

Guess a magic number between 0 and 100

Enter your guess: 50 <Enter>

Your guess is too high

Enter your guess: 25 <Enter>

Your guess is too low

Enter your guess: 42 <Enter>

Your guess is too high

Enter your guess: 39 <Enter>

Yes, the number is 39

325.2 Program 2

Guessing Game
Phase 1: Problem-solving

• This is the famous number guessing game.

• What is the normal first guess?
◦ 50

• Why?
◦ Because no matter the result (too high or too low), the number of

possible answers left is divided in half!

▪ If the guess is too high, you know the answer is in between 0 and 49.

▪ If the guess is too low, you know the answer is in between 51 and 100.

▪ So you can eliminate half of the numbers from consideration.

335.2 Program 2

Guessing Game
Phase 1: Problem-solving

• So are we ready to code?
◦ NO!

• We must THINK before coding.

• Think:
◦ How would you solve the problem without a program?

◦ You need a random number between 0 and 100.

◦ You need to ask the user to enter a guess.

◦ You need to compare the guess with the random number.

345.2 Program 2

Guessing Game
Phase 1: Problem-solving

• Good idea to code incrementally when using loops

• Meaning:
◦ Do not write the looping structure immediately.

◦ First, try to just write the logic of the program, but without using
loops.
▪ So just write the code for one "loop", one iteration.

◦ Then, write the code for the loop structure.

◦ Think of the following code as an “initial draft”.

355.2 Program 2

Guessing Game
Phase 2: Implementation (1st Draft)

LISTING 5.2 GuessNumberOneTime.py

import random

Generate a random number to be guessed

number = random.randint(0, 100)

print("Guess a magic number between 0 and 100")

Prompt the user to guess the number

guess = eval(input("Enter your guess: "))

if guess == number:

print("Yes, the number is " + str(number))

elif guess > number:

print("Your guess is too high")

else:

print("Your guess is too low")

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

365.2 Program 2

Guessing Game
Phase 1: Problem-solving

• When this program runs, it prompts the user to enter a guess
only once.

• To let the user enter a guess repeatedly, you can change the
code in lines 9–16 to create a loop, as follows:

Guess a magic number between 0 and 100

Enter your guess: 50 <Enter>

Your guess is too high

while True:

Prompt the user to guess the number

guess = eval(input("Enter your guess: "))

if guess == number:

print("Yes, the number is " + str(number))

elif guess > number:

print("Your guess is too high")

else:

print("Your guess is too low")

1

2

3

4

5

6

7

8

9

10

375.2 Program 2

Guessing Game
Phase 2: Implementation (2nd Draft)

GuessNumberInfiniteTime.py

import random

Generate a random number to be guessed

number = random.randint(0, 100)

print("Guess a magic number between 0 and 100")

while True:

Prompt the user to guess the number

guess = eval(input("Enter your guess: "))

if guess == number:

print("Yes, the number is " + str(number))

elif guess > number:

print("Your guess is too high")

else:

print("Your guess is too low")

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

385.2 Program 2

Guessing Game
Phase 1: Problem-solving

• This loop repeatedly prompts the user to enter a guess.

• However, the loop doesn’t end even if the user entered the
correct guess.

• This is because the condition of the loop is always True.

• So the loop still needs to terminate.
◦ When the guess is finally correct, the loop should exit.

Guess a magic number between 0 and 100

Enter your guess: 25 <Enter>

Your guess is too low

Enter your guess: 39 <Enter>

Yes, the number is 39

Enter your guess: 42 <Enter>

Your guess is too high

Enter your guess: ...

395.2 Program 2

Guessing Game
Phase 1: Problem-solving

• So what is the loop condition?
while (guess != number)

◦ So if the guess is not the same as the random number, continue
the while loop.

• So, revise the loop as follows:
guess = -1 # Initial value that doesn't meet the loop condition

while guess != number:

Prompt the user to guess the number

guess = eval(input("Enter your guess: "))

if guess == number:

print("Yes, the number is", number)

elif guess > number:

print("Your guess is too high")

else:

print("Your guess is too low")

1

2

3

4

5

6

7

8

9

10

11

405.2 Program 2

Guessing Game
Phase 2: Implementation (Final)

LISTING 5.3 GuessNumber.py

import random

Generate a random number to be guessed

number = random.randint(0, 100)

print("Guess a magic number between 0 and 100")

guess = -1 # Initial value that doesn't meet the loop condition

while guess != number:

Prompt the user to guess the number

guess = eval(input("Enter your guess: "))

if guess == number:

print("Yes, the number is", number)

elif guess > number:

print("Your guess is too high")

else:

print("Your guess is too low")

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

415.2 Program 2

Guessing Game
Trace The Program Execution

Guess a magic number between 0 and 100

Enter your guess: 50 <Enter>

Your guess is too high

Enter your guess: 25 <Enter>

Your guess is too low

Enter your guess: 42 <Enter>

Your guess is too high

Enter your guess: 39 <Enter>

Yes, the number is 39

425.2 Program 2

Guessing Game
Discussion

• The program generates the random number in line 4.

• Then, it prompts the user to enter a guess continuously in a
loop (lines 9–18).

• For each guess, the program determines whether the user’s
number is correct, too high, or too low (lines 13–18).

• When the guess is correct, the program exits the loop (line 9).

• Note that guess is initialized to -1.
◦ This is to avoid initializing it to a value between 0 and 100, because

that could be the number to be guessed.

435.2 Program 2

Loop Design Strategies

• Coding a correct loop is challenging for new programmers.

• Therefore, three steps are recommended:
◦ Step 1: Identify the statements that need to be repeated.

◦ Step 2: Wrap these statements in a loop (Infinite loop) like this:

◦ Step 3: Code the loop-continuation-condition and include
appropriate statements to control the loop.

while True:

Statements

while loop-continuation-condition:

Statements

Additional statements for controlling the loop

445.2

Multiple Subtraction Quiz
Program 3

Write a program to randomly generate five subtraction questions
and ask the user for the answer to each. Count how many the
user got correct, and display the total time spent, by the user,
answering the five questions.

What is 1 - 1? 0 <Enter>

You are correct!

What is 7 - 2? 5 <Enter>

You are correct!

What is 9 - 3? 4 <Enter>

Your answer is wrong.

9 - 3 is 6

What is 6 - 6? 0 <Enter>

You are correct!

What is 9 - 6? 2 <Enter>

Your answer is wrong.

9 - 6 is 3

Correct count is 3 out of 5

Test time is 10 seconds

455.2 Program 3

Multiple Subtraction Quiz
Phase 1: Problem-solving

• Use the loop design strategy:
◦ First, identify the statements that need to be repeated.
➢ The statements for randomly generating two numbers.

➢ Asking the user for the answer to the subtraction question.

➢ Grading the question.

▪ Comparing user answer to the real answer.

◦ Second, wrap these statements inside a loop.

◦ Finally, add a loop control variable and an appropriate loop-
continuation-condition that will execute the loop five times.

465.2 Program 3

Multiple Subtraction Quiz
Phase 2: Implementation

LISTING 5.4 SubtractionQuizLoop.py

import random

import time

correctCount = 0 # Count the number of correct answers

count = 0 # Count the number of questions

NUMBER_OF_QUESTIONS = 5 # Constant

startTime = time.time() # Get start time

while count < NUMBER_OF_QUESTIONS:

1. Generate two random single-digit integers

number1 = random.randint(0, 9)

number2 = random.randint(0, 9)

2. If number1 < number2, swap number1 with number2

if number1 < number2:

number1, number2 = number2, number1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

475.2 Program 3

Multiple Subtraction Quiz
Phase 2: Implementation

LISTING 5.4 SubtractionQuizLoop.py

3. Prompt the student to answer "what is number1 - number2?“

answer = eval(input("What is " + str(number1) + " - " +

str(number2) + "? "))

5. Grade the answer and display the result

if number1 - number2 == answer:

print("You are correct!")

correctCount += 1

else:

print("Your answer is wrong.\n", number1, "-",

number2, "should be", (number1 - number2))

Increase the count

count += 1

endTime = time.time() # Get end time

testTime = int(endTime - startTime) # Get test time

print("Correct count is", correctCount, "out of",

NUMBER_OF_QUESTIONS, "\nTest time is", testTime, "seconds")

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

485.2 Program 3

Multiple Subtraction Quiz
Discussion

• The program uses the control variable count to control the
execution of the loop.

◦ count is initially 0 (line 5)

◦ count is increased by 1 in each iteration (line 32).

◦ A subtraction question is displayed and processed in each
iteration.

• The program obtains the time before the test starts (line 8) and
the time after the test ends (line 34).

◦ Then, it computes the test time in seconds (line 35).

• The program displays the correct count and test time after all
the quizzes have been taken (lines 36–37).

495.2 Program 3

Controlling a Loop with User
Confirmation

• The preceding example (Program 3) executes the loop five
times.

• If you want the user to decide whether to take another
question, you can offer a user confirmation.

• The template of the program can be coded as follows:

continueLoop = 'Y'

while continueLoop == 'Y':

Execute the loop body once

...

Prompt the user for confirmation

continueLoop = input("Enter Y to continue and N to quit: ")

505.2

Advanced Multiple Subtraction Quiz
Program 4

Rewrite Program 3 with user confirmation to let the user decide
whether to advance to the next question.

What is 6 - 1? 5 <Enter>

You are correct!

Enter Y to continue and N to quit: Y <Enter>

What is 8 - 0? 6 <Enter>

Your answer is wrong.

8 - 0 should be 8

Enter Y to continue and N to quit: Y <Enter>

What is 8 - 3? 5 <Enter>

You are correct!

Enter Y to continue and N to quit: N <Enter>

Correct count is 2 out of 3

Test time is 24 seconds

515.2 Program 4

Advanced Multiple Subtraction Quiz
Phase 1: Problem-solving

• Use the template of controlling a loop with user confirmation:

• So we have to modify the loop condition as shown in the
previous template.

◦ Remove unnecessary variables or constants that the new loop
condition doesn’t use, such as NUMBER_OF_QUESTIONS.

◦ After removing them, modify statements, such as print statements,
that use the removed variables or contacts.

continueLoop = 'Y'

while continueLoop == 'Y':

Execute the loop body once

...

Prompt the user for confirmation

continueLoop = input("Enter Y to continue and N to quit: ")

525.2 Program 4

Advanced Multiple Subtraction Quiz
Phase 2: Implementation

SubtractionQuizLoopUserConfirmation.py

import random

import time

correctCount = 0 # Count the number of correct answers

count = 0 # Count the number of questions

startTime = time.time() # Get start time

continueLoop = 'Y' # User confirmation flag

while continueLoop == 'Y':

1. Generate two random single-digit integers

number1 = random.randint(0, 9)

number2 = random.randint(0, 9)

2. If number1 < number2, swap number1 with number2

if number1 < number2:

number1, number2 = number2, number1

3. Prompt the student to answer "what is number1 - number2?“

answer = eval(input("What is " + str(number1) + " - " +

str(number2) + "? "))

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

535.2 Program 4

Advanced Multiple Subtraction Quiz
Phase 2: Implementation

SubtractionQuizLoopUserConfirmation.py

5. Grade the answer and display the result

if number1 - number2 == answer:

print("You are correct!")

correctCount += 1

else:

print("Your answer is wrong.\n", number1, "-",

number2, "should be", (number1 - number2))

Increase the count

count += 1

Prompt the user for confirmation

continueLoop = input("Enter Y to continue and N to quit: ")

print() # To insert a new line

endTime = time.time() # Get end time

testTime = int(endTime - startTime) # Get test time

print("Correct count is", correctCount, "out of",

count, "\nTest time is", testTime, "seconds")

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

545.2 Program 4

Controlling a Loop with a Sentinel Value

• Often the number of times a loop is executed is not predetermined.

• Another common technique for controlling a loop is by choosing a
special value when reading and processing user input.

• This special input value is known as a sentinel value.

• The sentinel value signifies the end of the input.

• A loop that uses a sentinel value in this way is called a sentinel-
controlled loop.

• Example:
➢ Ask the user to keep inputting as many integer values as they want.

➢ Tell them that the loop will stop once the value -1 is entered.

➢ Therefore, -1 would be the sentinel value.

555.2

Sentinel Value
Program 5

Write a program that will sum up all user inputted values. The
user can keep inputting values for as long as the user wishes. If
the user enters "0", this means the end of the input. Your
program should display the sum to the user.

Enter an integer (the input ends if it is 0): 2 <Enter>

Enter an integer (the input ends if it is 0): 3 <Enter>

Enter an integer (the input ends if it is 0): 4 <Enter>

Enter an integer (the input ends if it is 0): 0 <Enter>

The sum is 9

565.2 Program 5

Sentinel Value
Phase 1: Problem-solving

• Use the loop design strategy:
◦ First, identify the statements that need to be repeated.
➢ Ask the user for a value (data).

▪ data = eval(input("Enter an integer ..."))

➢ Add it to the variable sum.

▪ sum += data

◦ Second, wrap these statements inside a loop.

◦ Finally, add a loop control variable and an appropriate loop-
continuation-condition which will be data != 0 (the sentinel value).

575.2 Program 5

Sentinel Value
Phase 2: Implementation

LISTING 5.5 SentinelValue.py

data = eval(input("Enter an integer (the input exits " +

"if the input is 0): "))

Keep reading data until the input is 0

sum = 0

while data != 0:

sum += data

data = eval(input("Enter an integer (the input exits " +

"if the input is 0): "))

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

11

12

Enter an integer (the input ends if it is 0): 10 <Enter>

Enter an integer (the input ends if it is 0): 5 <Enter>

Enter an integer (the input ends if it is 0): 0 <Enter>

The sum is 15

585.2 Program 5

Sentinel Value
Trace The Program Execution

Enter an integer (the input ends if it is 0): 2 <Enter>

Enter an integer (the input ends if it is 0): 3 <Enter>

Enter an integer (the input ends if it is 0): 4 <Enter>

Enter an integer (the input ends if it is 0): 0 <Enter>

The sum is 9

595.2 Program 5

Sentinel Value
Discussion

• If data is not 0, it is added to the sum (line 7) and the next item
of input data is read (lines 9–10).

• If data is 0, the loop body is no longer executed, and the while
loop terminates.

• The input value 0 is the sentinel value for this loop.

• Note that if the first input read is 0, the loop body never
executes, and the resulting sum is 0.

Enter an integer (the input ends if it is 0): 0 <Enter>

The sum is 0

605.2 Program 5

Caution

• Don’t use floating-point values for equality checking in a loop
control.

• Why?
◦ Since those values are approximated, they could lead to imprecise

counter values.

• Consider the following code for computing 1 + 0.9 + 0.8 + ... +
0.1:

item = 1

sum = 0

while item != 0: # No guarantee item will be 0

sum += item

item -= 0.1

print(sum)

1

2

3

4

5

6

615.2

Caution

• Consider the following code for computing 1 + 0.9 + ... + 0.1:

➢ The variable item starts with 1 and is reduced by 0.1 every time the loop
body is executed.

➢ The loop should terminate when item becomes 0.

➢ However, there is no guarantee that item will be exactly 0, because the
floating-point arithmetic is approximated.

▪ 0.00000000000000001 != 0 → True

➢ This loop seems okay on the surface, but it is actually an infinite loop.

item = 1

sum = 0

while item != 0:

sum += item

item -= 0.1

print(sum)

1

2

3

4

5

6

Iteration 1 →
Iteration 2 →
Iteration 3 →
Iteration 4 →
Iteration 5 →
Iteration 6 →
Iteration 7 →
Iteration 8 →
Iteration 9 →
Iteration 10 →

1
1.9
2.7
3.4000000000000004
4.0
4.5
4.9
5.2
5.4
5.500000000000001

sum0.9
0.8
0.7000000000000001
0.6000000000000001
0.5000000000000001
0.40000000000000013
0.30000000000000016
0.20000000000000015
0.10000000000000014
0.00000000000000001

item

625.2

Check Point
#1

Analyze the following code. Is count < 100 always True, always
False, or sometimes True or sometimes False at Point A, Point B,
and Point C?

➢ Answer:
➢ Point A: always True

➢ Point B: sometimes False (Only one time)

➢ Point C: always False

count = 0

while count < 100:

Point A

print("Programming is fun!")

count += 1

Point B

Point C

1

2

3

4

5

6

7

8

635.2

Check Point
#2

What is wrong if guess is initialized to 0 in line 8 in the following code?

➢ Answer: the randomly generated number (number) could be 0. If this
happened, the program will not execute the loop.
o The probability of this to be happened is 0.99% (1/101)

LISTING 5.3 GuessNumber.py

import random

Generate a random number to be guessed

number = random.randint(0, 100)

print("Guess a magic number between 0 and 100")

guess = -1 # Initial value that doesn't meet the loop condition

while guess != number:

Prompt the user to guess the number

guess = eval(input("Enter your guess: "))

if guess == number:

print("Yes, the number is", number)

elif guess > number:

print("Your guess is too high")

else:

print("Your guess is too low")

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

645.2

Check Point
#3

How many times are the following loop bodies repeated? What is
the printout of each loop?

i = 1

while i < 10:

if i % 2 == 0:

print(i)

1

2

3

4

5

(a)

Infinite Number of Times

i = 1

while i < 10:

if i % 2 == 0:

print(i)

i += 1

1

2

3

4

5

(c)

9 Times

2

4

6

8

i = 1

while i < 10:

if i % 2 == 0:

print(i)

i += 1

1

2

3

4

5

(b)

Infinite Number of Times

Empty Empty

655.2

Check Point
#4

Suppose the input is 2 3 4 5 0 (one number per line). What is the
output of the following code?

number = eval(input("Enter an integer: "))

max = number

while number != 0:

number = eval(input("Enter an integer: "))

if number > max:

max = number

print("max is", max)

print("number", number)

1

2

3

4

5

6

7

8

9

10

Enter an integer: 2 <Enter>

Enter an integer: 3 <Enter>

Enter an integer: 4 <Enter>

Enter an integer: 5 <Enter>

Enter an integer: 0 <Enter>

max is 5

number 0

665.2

5.3. The for Loop

▪ Trace for Loop

▪ The range Function

▪ range(a, b)

▪ range(a)

▪ range(a, b, k)

▪ Check Point #5 - #9

67

The for Loop

• Often you will use a while loop to iterate a certain number of
times.

• A loop of this type is called a counter-controlled loop.

• In general, the loop can be written as follows:

• If you want to iterate a specific number of times, it is
better/easier to just use a for loop.

i = initialValue # Initialize loop-control variable

while i < endValue:

Loop body

...

i += 1 # Adjust loop-control variable

685.3

The for Loop

• A for loop can be used to simplify the preceding loop:

• In general, the syntax of a for loop is:

for i in range(initialValue, endValue):

Loop body

for var in sequence:

Loop body

i = initialValue # Initialize loop-control variable

while i < endValue:

Loop body

...

i += 1 # Adjust loop-control variable

695.3

The for Loop
Flowchart

• Flowchart for a generic for loop:

• A sequence holds multiple items
of data, stored one after the
other.

• The variable var takes on each
successive value in the
sequence, the statements in the
body of the loop are executed
once for each value.

for var in sequence:

Loop body

705.3

The for Loop
Example

• Example:

for i in range(0,5):

print(i)

0

1

2

3

4

715.3

Trace for Loop

print("Start ...")

for i in range(0,5):

print("i =", i)

print("... End")

1

2

3

4

Print “Start ...”

Start ...

725.3 1 of 12

Trace for Loop

print("Start ...")

for i in range(0,5):

print("i =", i)

print("... End")

1

2

3

4

Loop 5 times.
Loop #1

Start ...

[0 , 1 , 2 , 3 , 4] Range (0, 5) →

0i →

735.3 2 of 12

Trace for Loop

print("Start ...")

for i in range(0,5):

print("i =", i)

print("... End")

1

2

3

4

Print “i = 0”

Start ...

i = 0

[0 , 1 , 2 , 3 , 4] Range (0, 5) →

0i →

745.3 3 of 12

Trace for Loop

print("Start ...")

for i in range(0,5):

print("i =", i)

print("... End")

1

2

3

4

Loop #2

Start ...

i = 0

[0 , 1 , 2 , 3 , 4] Range (0, 5) →

1i →

755.3 4 of 12

Trace for Loop

print("Start ...")

for i in range(0,5):

print("i =", i)

print("... End")

1

2

3

4

Print “i = 1”

Start ...

i = 0

i = 1

[0 , 1 , 2 , 3 , 4] Range (0, 5) →

1i →

765.3 5 of 12

Trace for Loop

print("Start ...")

for i in range(0,5):

print("i =", i)

print("... End")

1

2

3

4

Loop #3

Start ...

i = 0

i = 1

[0 , 1 , 2 , 3 , 4] Range (0, 5) →

2i →

775.3 6 of 12

Trace for Loop

print("Start ...")

for i in range(0,5):

print("i =", i)

print("... End")

1

2

3

4

Print “i = 2”

Start ...

i = 0

i = 1

i = 2

2i →

[0 , 1 , 2 , 3 , 4] Range (0, 5) →

785.3 7 of 12

Trace for Loop

print("Start ...")

for i in range(0,5):

print("i =", i)

print("... End")

1

2

3

4

Loop #4

Start ...

i = 0

i = 1

i = 2

[0 , 1 , 2 , 3 , 4] Range (0, 5) →

3i →

795.3 8 of 12

Trace for Loop

print("Start ...")

for i in range(0,5):

print("i =", i)

print("... End")

1

2

3

4

Print “i = 3”

Start ...

i = 0

i = 1

i = 2

i = 3

3i →

[0 , 1 , 2 , 3 , 4] Range (0, 5) →

805.3 9 of 12

Trace for Loop

print("Start ...")

for i in range(0,5):

print("i =", i)

print("... End")

1

2

3

4

Loop #5

Start ...

i = 0

i = 1

i = 2

i = 3

[0 , 1 , 2 , 3 , 4] Range (0, 5) →

4i →

815.3 10 of 12

Trace for Loop

print("Start ...")

for i in range(0,5):

print("i =", i)

print("... End")

1

2

3

4

Print “i = 4”

Start ...

i = 0

i = 1

i = 2

i = 3

i = 4

4i →

[0 , 1 , 2 , 3 , 4] Range (0, 5) →

825.3 11 of 12

Trace for Loop

print("Start ...")

for i in range(0,5):

print("i =", i)

print("... End")

1

2

3

4

Print “... End”

Start ...

i = 0

i = 1

i = 2

i = 3

i = 4

... End

[0 , 1 , 2 , 3 , 4] Range (0, 5) →

4i →

835.3 12 of 12

The range Function

• The range() function returns a sequence of integer numbers,
starting from 0 by default, and increments by 1 (by default),
and ends at a specified number.

• Syntax:

◦ start: an integer number specifying at which position to start.
Default is 0.

◦ stop: an integer number specifying at which position to end.
◦ step: an integer number specifying the incrementation. Default is 1

• It has three versions:
◦ range(a)
◦ range(a, b)
◦ range(a, b, k)

range(start, stop, step)

845.3

range(a, b)

• The function range(a, b) returns the sequence of integers
a, a + 1, ..., b - 2, and b - 1.

• For example:

for v in range(4, 8):

print("v =", v)

1

2

v = 4

v = 5

v = 6

v = 7

855.3

range(a)

• The function range(a) is the same as range(0, a).

• For example:

for v in range(6):

print("v =", v)

1

2

v = 0

v = 1

v = 2

v = 3

v = 4

v = 5

865.3

range(a, b, k)

• k is used as step value in range(a, b, k).
➢ The first number in the sequence is a.

➢ Each successive number in the sequence will increase by the step value k.

➢ b is the limit.

➢ The last number in the sequence must be less than b.

• Example:

◦ The step value in range (3, 9, 2) is 2, and the limit is 9. So, the sequence is 3, 5, and 7

for v in range(3, 9, 2):

print("v =", v)

1

2

v = 3

v = 5

v = 7

875.3

range(a, b, k)
Count Backward

• The range(a, b, k) function can count backward if k is negative.

• In this case, the sequence is still a, a + k, a + 2k, and so on for a
negative k.

• The last number in the sequence must be greater than b.

• Example:
for v in range(5, 1, -1):

print("v =", v)

1

2

v = 5

v = 4

v = 3

v = 2

885.3

Note

• The numbers in the range function must be integers.

• For example, range(1.5, 8.5), range(8.5), or range(1.5, 8.5, 1)
would be wrong.

• Example:

for v in range(6.5):

print("v =", v)

1

2

for v in range(6.5):

TypeError: 'float' object cannot be interpreted as

an integer

895.3

Note

range(2) [0, 1]

range(2,3) [2]

range(2,-3) []

range(2,-3,-1) [2, 1, 0, -1, -2]

range(2, 2) []

range(1, 2, 2) [1]

range(2, 2, -1) []

range(5, 2, -1) [5, 4, 3]

905.3

Check Point
#5

Suppose the input is 2 3 4 5 0 (one number per line). What is the
output of the following code?

number = 0

sum = 0

for count in range(5):

number = eval(input("Enter an integer: "))

sum += number

print("sum is", sum)

print("count is", count)

1

2

3

4

5

6

7

8

9

Enter an integer: 2 <Enter>

Enter an integer: 3 <Enter>

Enter an integer: 4 <Enter>

Enter an integer: 5 <Enter>

Enter an integer: 0 <Enter>

sum is 14

count is 4

915.3

Check Point
#6

Can you convert any for loop to a while loop? List the advantages
of using for loops.

➢ Answers:
➢ Yes, we can convert any for loop to a while loop.

➢ Advantages:
▪ The number of repetitions is specified explicitly in advance.

▪ When using a while loop, programmers often forget to adjust the control
variable such as (i += 1). Using for loop can avoid this error.

925.3

Check Point
#7

Convert the following for loop statement to a while loop:

➢ Solution:

sum = 0

for i in range(1001):

sum = sum + i

print("sum =", sum)

1

2

3

4

sum = 0

i = 0

while i < 1001:

sum = sum + i

i += 1

print("sum =", sum)

1

2

3

4

5

6

sum = 500500

sum = 500500

935.3

Check Point
#8

Can you always convert any while loop into a for loop? Convert
the following while loop into a for loop.

➢ Answers:
➢ No, we cannot always convert any while loop into a for loop

especially for the while loop that is not based on the counter
variable (counter-controlled loop).

i = 1

sum = 0

while sum < 10000:

sum = sum + i

i += 1

print("sum =", sum)

1

2

3

4

5

6

sum = 10011

sum = 0

for i in range(1, 142):

sum = sum + i

print("sum =", sum)

1

2

3

4

sum = 10011

945.3

Check Point
#9

How many times are the following loop bodies repeated? What is
the printout of each loop?

count = 0

while count < n:

count += 1

1

2

3

(a)

n Times

for count in range(n):

print(count)

1

2

3

(b)

n Times

count = 5

while count < n:

count += 1

1

2

3

(c)

(n – count) Times

count = 5

while count < n:

count += 3

1

2

3

(d)

(The ceiling of (n - 5) / 3) Times

955.3

5.4. Nested Loops

▪ Trace Nested Loops

▪ Program 6: Multiplication Table

▪ Check Point #10 - #16

96

Nested Loops

• A loop can be nested inside another loop.

• Nested loops consist of an outer loop and one or more inner
loops.

• Each time the outer loop is repeated, the inner loops are
reentered and started anew.

• Example:
Start

----- x = 1 -----

y = 4

y = 5

----- x = 2 -----

y = 4

y = 5

----- x = 3 -----

y = 4

y = 5

End

print("Start")

print()

for x in range(1, 4):

print("----- x =", x, "-----")

for y in range(4, 6):

print("y =", y)

print()

print("End")

1

2

3

4

5

6

7

8

9

10

Outer Loop

Inner Loop

975.4

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

98

i j

Program Trace

5.4

Draw a table and put each variable in a column.

1 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

99

i j

1

Program Trace

5.4

Loop 3 times, and the sequence is [1, 2, 3].
So, the first item is 1. now i is 1.

[1 , 2 , 3] Range (1, 4) →

2 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

100

i j

1

0

Program Trace

5.4

j is 0 now

[1 , 2 , 3] Range (1, 4) →

3 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

101

i j

1

0

Program Trace

5.4

0 < 1 is True

[1 , 2 , 3] Range (1, 4) →

4 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

102

i j

1

0

Program Trace

5.4

Print 0 and put a white space “ “ at the end.

0

[1 , 2 , 3] Range (1, 4) →

5 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

103

i j

1

0

1

Program Trace

5.4

Increment j by 1. j is 1 now.

0

[1 , 2 , 3] Range (1, 4) →

6 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

104

i j

1

0

1

Program Trace

5.4

1 < 1 is False.
Exit from the current loop (inner loop).

0

[1 , 2 , 3] Range (1, 4) →

7 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

105

i j

1

0

1

Program Trace

5.4

Print a new line (\n)

0

[1 , 2 , 3] Range (1, 4) →

8 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

106

i j

1

0

1

2

Program Trace

5.4

Update i to the next unused item in the
sequence. Now i is 2.

0

[1 , 2 , 3] Range (1, 4) →

9 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

1075.4

j is 0 now i j

1

0

1

2

0

Program Trace

0

[1 , 2 , 3] Range (1, 4) →

10 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

1085.4

0 < 2 is True i j

1

0

1

2

0

Program Trace

0

[1 , 2 , 3] Range (1, 4) →

11 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

1095.4

Print 0 and put a white space “ “ at the end. i j

1

0

1

2

0

Program Trace

0

0

[1 , 2 , 3] Range (1, 4) →

12 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

1105.4

Increment j by 1. j is 1 now. i j

1

0

1

2

0

1

Program Trace

[1 , 2 , 3] Range (1, 4) →

0

0

13 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

1115.4

i j

1

0

1

2

0

1

Program Trace

0

0

[1 , 2 , 3] Range (1, 4) →

1 < 2 is True

14 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

1125.4

Print 1 and put a white space “ “ at the end. i j

1

0

1

2

0

1

Program Trace

0

0 1

[1 , 2 , 3] Range (1, 4) →

15 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

1135.4

Increment j by 1. j is 2 now. i j

1

0

1

2

0

1

2

Program Trace

[1 , 2 , 3] Range (1, 4) →

0

0 1

16 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

1145.4

Program Trace

[1 , 2 , 3] Range (1, 4) →

i j

1

0

1

2

0

1

2

0

0 1

2 < 2 is False.
Exit from the current loop (inner loop).

17 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

115

Program Trace

5.4

Print a new line (\n)

0

0 1

[1 , 2 , 3] Range (1, 4) →

i j

1

0

1

2

0

1

2

18 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

116

Program Trace

5.4

Update i to the next unused item in the
sequence. Now i is 3.

[1 , 2 , 3] Range (1, 4) →

0

0 1

i j

1

0

1

2

0

1

2

3

19 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

1175.4

j is 0 now

Program Trace

[1 , 2 , 3] Range (1, 4) →

0

0 1

i j

1

0

1

2

0

1

2

3

0

20 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

1185.4

0 < 3 is True

Program Trace

[1 , 2 , 3] Range (1, 4) →

0

0 1

i j

1

0

1

2

0

1

2

3

0

21 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

1195.4

Print 0 and put a white space “ “ at the end.

Program Trace

[1 , 2 , 3] Range (1, 4) →

0

0 1

0

i j

1

0

1

2

0

1

2

3

0

22 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

1205.4

Increment j by 1. j is 1 now.

Program Trace

[1 , 2 , 3] Range (1, 4) →

0

0 1

0

i j

1

0

1

2

0

1

2

3

0

1

23 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

1215.4

Program Trace

1 < 3 is True

[1 , 2 , 3] Range (1, 4) →

0

0 1

0

i j

1

0

1

2

0

1

2

3

0

1

24 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

1225.4

Print 1 and put a white space “ “ at the end.

Program Trace

[1 , 2 , 3] Range (1, 4) →

0

0 1

0 1

i j

1

0

1

2

0

1

2

3

0

1

25 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

1235.4

Increment j by 1. j is 2 now.

Program Trace

[1 , 2 , 3] Range (1, 4) →

0

0 1

0 1

i j

1

0

1

2

0

1

2

3

0

1

2

26 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

1245.4

Program Trace

2 < 3 is True

[1 , 2 , 3] Range (1, 4) →

0

0 1

0 1

i j

1

0

1

2

0

1

2

3

0

1

2

27 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

1255.4

Print 2 and put a white space “ “ at the end.

Program Trace

[1 , 2 , 3] Range (1, 4) →

0

0 1

0 1 2

i j

1

0

1

2

0

1

2

3

0

1

2

28 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

1265.4

Increment j by 1. j is 3 now.

Program Trace
[1 , 2 , 3] Range (1, 4) →

0

0 1

0 1 2

i j

1

0

1

2

0

1

2

3

0

1

2

3

29 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

1275.4

Program Trace
[1 , 2 , 3] Range (1, 4) →

0

0 1

0 1 2

i j

1

0

1

2

0

1

2

3

0

1

2

3

3 < 3 is False.
Exit from the current loop (inner loop).

30 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

1285.4

Program Trace
[1 , 2 , 3] Range (1, 4) →

0

0 1

0 1 2

i j

1

0

1

2

0

1

2

3

0

1

2

3

Print a new line (\n)

31 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

1295.4

Program Trace
[1 , 2 , 3] Range (1, 4) →

0

0 1

0 1 2

i j

1

0

1

2

0

1

2

3

0

1

2

3

Is there any unused item in the sequence? No.
So, exit from the current loop (outer loop)

32 of 33

for i in range(1, 4):

j = 0

while j < i:

print(j, end = " ")

j += 1

print()

print("Done")

1

2

3

4

5

6

7

Trace Nested Loops

1305.4

Program Trace
[1 , 2 , 3] Range (1, 4) →

0

0 1

0 1 2

Done

i j

1

0

1

2

0

1

2

3

0

1

2

3

Print Done

33 of 33

Multiplication Table
Program 6

Write a program that uses nested for loops to print out the 1
through 9 multiplication table.

Multiplication Table

| 1 2 3 4 5 6 7 8 9

1 | 1 2 3 4 5 6 7 8 9

2 | 2 4 6 8 10 12 14 16 18

3 | 3 6 9 12 15 18 21 24 27

4 | 4 8 12 16 20 24 28 32 36

5 | 5 10 15 20 25 30 35 40 45

6 | 6 12 18 24 30 36 42 48 54

7 | 7 14 21 28 35 42 49 56 63

8 | 8 16 24 32 40 48 56 64 72

9 | 9 18 27 36 45 54 63 72 81

Program 6 1315.4

Multiplication Table
Phase 1: Problem-solving

• Examine the table:
◦ We have nine rows of data.

◦ We have nine columns of data.

• Look at the individual rows:
◦ The first row contains the answer of 1x1, 1x2, 1x3…

◦ The second row contains the answer of 2x1, 2x2, 2x3…

◦ …

◦ The ninth row contains the answer of 9x1, 9x2, 9x3…

• For each row heading (1, 2, 3, 4, 5, 6, 7, 8, 9):
◦ We have that number multiplied by each of 1 through 9.

Program 6 1325.4

Multiplication Table
Phase 1: Problem-solving

• Use two for loops:

1. The outer for loop will iterate over all rows
▪ And it will start at i = 1
➢ because the first row is labeled as 1.

▪ And it will iterate until and including i = 9 (the last row).

2. Then, for EACH row, the inner for loop will calculate that row's
answer of the row # times the values 1 through 9.

Multiplication Table

| 1 2 3 4 5 6 7 8 9

1 | 1 2 3 4 5 6 7 8 9

2 | 2 4 6 8 10 12 14 16 18

3 | 3 6 9 12 15 18 21 24 27

4 | 4 8 12 16 20 24 28 32 36

5 | 5 10 15 20 25 30 35 40 45

6 | 6 12 18 24 30 36 42 48 54

7 | 7 14 21 28 35 42 49 56 63

8 | 8 16 24 32 40 48 56 64 72

9 | 9 18 27 36 45 54 63 72 81

Outer Loop

Inner Loop

Program 6 1335.4

Multiplication Table
Phase 2: Implementation

LISTING 5.6 MultiplicationTable.py

print(" Multiplication Table")

Display the number title

print(" |", end = '')

for j in range(1, 10):

print(" ", j, end = '')

print() # Jump to the new line

print("---")

Display table body

for i in range(1, 10):

print(i, "|", end = '')

for j in range(1, 10):

Display the product and align properly

print(format(i * j, '4d'), end = '')

print()# Jump to the new line

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Program 6 1345.4

Multiplication Table
Discussion

• The program displays a title (line 1) on the first line in the
output.

• The first for loop (lines 4–5) displays the numbers 1 through 9
on the second line.

• A line of dashes (-) is displayed on the third line (line 7).

• The next loop (lines 10–15) is a nested for loop with the control
variable i in the outer loop and j in the inner loop.

• For each i, the product i * j is displayed on a line in the inner
loop, with j being 1, 2, 3, . . ., 9.

Program 6 1355.4

Multiplication Table
Discussion

• To align the numbers properly, the program formats i * j using
format(i * j, "4d") (line 14).

◦ Recall that "4d" specifies a decimal integer format with width 4.

• Normally, the print function automatically jumps to the next
line.

◦ Invoking print(item, end = '') (lines 3, 5, 11, and 14) prints the item
without advancing to the next line.

◦ Note that the print function with the end argument was
introduced in Chapter 3.

Program 6 1365.4

Note

• Be aware that a nested loop may take a long time to run.

• Consider the following loop nested in three levels:

➢ The action is performed 1,000,000,000 times.

➢ If it takes 1 millisecond to perform the action, the total time to run
the loop would be more than 277 hours.

• So be careful with many nested loops.

for i in range(1000):

for j in range(1000):

for k in range(1000):

Perform an action

1

2

3

4

1375.4

Check Point
#10

How many times is the print statement executed:

➢ Solution:
◦ The outer loop runs 10 times
▪ From 0 to 9

◦ For each iteration, the inner loop runs from 0 to i
▪ First time i is 0, then i is 1, then 2, then 3, until i is 9

◦ Answer: 1 + 2 + 3 + … + 9 = 45 times

for i in range(10):

for j in range(i):

print(i * j)

1

2

3

1385.4

Check Point
#11

Show the output of the following
programs. (Hint: Draw a table and list
the variables in the columns to trace
these programs.)

for i in range(1, 5):

j = 0

while j < i:

print(j, end = " ")

j += 1

1

2

3

4

5

i j

1 0

1

2 0

1

2

3 0

1

2

3

4 0

1

2

3

4

Program Trace

0 0 1 0 1 2 0 1 2 3

(a)

1395.4

Check Point
#12

i = 0

while i < 5:

for j in range(i, 1, -1):

print(j, end = " ")

print("****")

i += 1

1

2

3

4

5

6

i j

0

1

2

2

3

3

2

4

4

3

2

Program Trace

2 ****

3 2 ****

4 3 2 ****

(B)

1405.4

Check Point
#13

i = 5

while i >= 1:

num = 1

for j in range(1, i + 1):

print(num, end = "xxx")

num *= 2

print()

i -= 1

1

2

3

4

5

6

7

8

i num j

5 1

2 1

4 2

8 3

16 4

32 5

4 1

2 1

4 2

8 3

16 4

3 1

2 1

4 2

8 3

2 1

2 1

4 2

1 1

2 1

Program Trace

1xxx2xxx4xxx8xxx16xxx

1xxx2xxx4xxx8xxx

1xxx2xxx4xxx

1xxx2xxx

1xxx

(c)

1415.4

Check Point
#14

i = 1

while i <= 5:

num = 1

for j in range(1, i + 1):

print(num, end = "G")

num += 2

print()

i += 1

1

2

3

4

5

6

7

8

i num j

1 1

3 1

2 1

3 1

5 2

3 1

3 1

5 2

7 3

4 1

3 1

5 2

7 3

9 4

5 1

3 1

5 2

7 3

9 4

11 5

Program Trace

1G

1G3G

1G3G5G

1G3G5G7G

1G3G5G7G9G

(d)

1425.4

Check Point
#15

i = 5

while i >= 1:

num = 1

for j in range(1, i + 1):

num *= 2

print(num, end = "xxx")

print()

i -= 1

1

2

3

4

5

6

7

8

i num j

5 1

2 1

4 2

8 3

16 4

32 5

4 1

2 1

4 2

8 3

16 4

3 1

2 1

4 2

8 3

2 1

2 1

4 2

1 1

2 1

Program Trace

2xxx4xxx8xxx16xxx32xxx

2xxx4xxx8xxx16xxx

2xxx4xxx8xxx

2xxx4xxx

2xxx

(e)

1435.4

Check Point
#16

i = 1

while i <= 5:

num = 1

for j in range(1, i + 1):

num += 2

print(num, end = "G")

print()

i += 1

1

2

3

4

5

6

7

8

i num j

1 1

3 1

2 1

3 1

5 2

3 1

3 1

5 2

7 3

4 1

3 1

5 2

7 3

9 4

5 1

3 1

5 2

7 3

9 4

11 5

Program Trace

3G

3G5G

3G5G7G

3G5G7G9G

3G5G7G9G11G

(f)

1445.4

5.5. Minimizing Numerical Errors

145

Minimizing Numerical Errors

• Using floating-point numbers in the loop-continuation-
condition may cause numeric errors.

• Numerical errors involving floating-point numbers are
inevitable.

• This section provides an example showing you how to minimize
such errors.

1465.5

Minimizing Numerical Errors
Example

The following program sums a series that starts with 0.01 and
ends with 1.0. The numbers in the series will increment by 0.01,
as follows: 0.01 + 0.02 + 0.03 and so on.

LISTING 5.7 TestSum.py

Initialize sum

sum = 0

Add 0.01, 0.02, ..., 0.99, 1 to sum

i = 0.01

while i <= 1.0:

sum += i

i = i + 0.01

Display result

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

11

The sum is 49.50000000000003

1475.5

Minimizing Numerical Errors
Example

• The result displayed is 49.5, but the correct result is 50.5.

• What went wrong?
◦ For each iteration in the loop, i is incremented by 0.01.

◦ When the loop ends, the i value is slightly larger than 1 (not exactly 1).

◦ This causes the last i value not to be added into sum.

• The fundamental problem is that the floating-point numbers are
represented by approximation.

1485.5

Minimizing Numerical Errors
Example

• To fix the problem, use an integer count to ensure that all the
numbers are added to sum.

• Here is the new loop:
TestSumFixWithWhileLoop.py

Initialize sum

sum = 0

Add 0.01, 0.02, ..., 0.99, 1 to sum

i = 0.01

count = 0

while count < 100:

sum += i

i = i + 0.01

count += 1 # Increase count

Display result

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

11

12

13

1495.5

Minimizing Numerical Errors
Example

• Or, use a for loop as follows:

• After this loop, sum is 50.5.

TestSumFixWithForLoop.py

Initialize sum

sum = 0

Add 0.01, 0.02, ..., 0.99, 1 to sum

i = 0.01

for count in range(100):

sum += i

i = i + 0.01

Display result

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

11

The sum is 50.50000000000003

1505.5

5.6. Case Studies

▪ Program 7: Finding the GCD

▪ Program 8: Predicting The Future Tuition

151

Finding the GCD
Program 7

Write a program to ask the user to enter two positive integers.
You should then find the greatest common divisor (GCD) and
print the result to the user.

Enter first integer: 125 <Enter>

Enter second integer: 2525 <Enter>

The greatest common divisor for 125 and 2525 is 25

1525.6 Program 7

Finding the GCD
Phase 1: Problem-solving

• Examples of Greatest Common Divisor (GCD):
▪ The GCD of the two integers 4 and 2 is 2
▪ The GCD of the two integers 16 and 24 is 8
▪ The GCD of the two integers 25 and 60 is 5

• So how do you calculate the GCD?

• Are you ready to code?
➢ NO!

• Always, first think about the problem and understand the
solution 100% before coding!

◦ Thinking enables you to generate a logical solution for the problem
without wondering how to write the code.

◦ Once you have a logical solution, type the code to translate the
solution into a program.

1535.6 Program 7

Finding the GCD
Phase 1: Problem-solving

• The GCD of the two integers number1 and number2:
◦ You know that the number 1 is a common divisor.
▪ because 1 divides into everything.

◦ But is 1 the greatest common divisor?

◦ So you can check the next values, one by one .
▪ Check 2, 3, 4, 5, 6, …

▪ Keep checking all the way up to the smaller of number1 or number2 .

◦ Whenever you find a new common divisor, this becomes the new
gcd.

◦ After you check all the possibilities, the value in the variable gcd is
the GCD of number1 and number2.

1545.6 Program 7

Finding the GCD
Phase 2: Implementation

LISTING 5.8 GreatestCommonDivisor.py

Prompt the user to enter two integers

n1 = eval(input("Enter first integer: "))

n2 = eval(input("Enter second integer: "))

gcd = 1 # Initial gcd is 1

k = 2 # Possible gcd

while k <= n1 and k <= n2:

if n1 % k == 0 and n2 % k == 0:

gcd = k # # Next possible gcd

k += 1

print("The greatest common divisor for",

n1, "and", n2, "is", gcd)

1

2

3

4

5

6

7

8

9

10

11

12

13

Enter first integer: 260 <Enter>

Enter second integer: 100 <Enter>

The greatest common divisor for 260 and 100 is 20

1555.6 Program 7

Predicting The Future Tuition
Program 8

A university charges $10,000 per year for study (tuition). The cost
of tuition increases 7% every year. Write a program to determine
how many years until the tuition will increase to $20,000.

Tuition will be doubled in 11 years

Tuition will be $21048.52 in 11 years

1565.6 Program 8

Information
Calculating Increasing/Decreasing By %

157

• How do you increase a number by x percent (x%)?
◦ You can use the following formula:

Increase number by x% = number * ((100 + x) / 100)

◦ Example:
▪ Suppose: number = 10000 and x= 7

▪ 7% increase for 10000 = 10000 * ((100 + 7) / 100) = 10000 * 1.07 = 10700

• How do you decrease a number by x percent (x%)?
◦ You can use the following formula:

Decrease number by x% = number * ((100 - x) / 100)

◦ Example:
▪ Suppose: number = 10000 and x= 7

▪ 7% decrease for 10000 = 10000 * ((100 - 7) / 100) = 10000 * 0.93 = 9300

Program 85.6

Predicting The Future Tuition
Phase 1: Problem-solving

• Think:
◦ How do we solve this on paper?
▪ Cost of Year0 = $10,000 → Year0 = 10,000

▪ Cost of Year1 = Year0 * 1.07 → Year1 = 10,000 * 1.07 = 10,700

▪ Cost of Year2 = Year1 * 1.07 → Year2 = 10,700 * 1.07 = 11,449

▪ Cost of Year3 = Year2 * 1.07 → Year3 = 11,449 * 1.07 = 12,250.43

▪ …

▪ Cost of Year10 = Year9 * 1.07 → Year10 = 18384.59 * 1.07 = 19,671.51

▪ Cost of Year11 = Year10 * 1.07 → Year11 = 19671.51 * 1.07 = 21,048.51

◦ So keep computing the tuition until it is at least $20,000.

◦ Once you get to $20,000, print the number of years taken.

1585.6 Program 8

Predicting The Future Tuition
Phase 1: Problem-solving

• Think:
◦ Now a closer look at some of the code:

◦ So we would keep doing this until tuition is greater than or equal
to $20,000.

◦ Then, at that point, we print the value in variable year.

◦ How to do this? Use a while loop!

year = 0 # Year 0

tuition = 10000

year += 1 # Year 1

tuition = tuition * 1.07

year += 1 # Year 2

tuition = tuition * 1.07

year += 1 # Year 3

tuition = tuition * 1.07

...

1595.6 Program 8

Predicting The Future Tuition
Phase 2: Implementation

LISTING 5.9 FutureTuition.py

year = 0 # Year 0

tuition = 10000 # Year 1

while tuition < 20000:

year += 1

tuition = tuition * 1.07

print("Tuition will be doubled in", year, "years")

print("Tuition will be $" + format(tuition, ".2f"),

"in", year, "years")

1

2

3

4

5

6

7

8

9

10

Tuition will be doubled in 11 years

Tuition will be $21048.52 in 11 years

1605.6 Program 8

5.7. Keywords break and continue

▪ break Keyword

▪ Trace break Statement

▪ continue Keyword

▪ Trace continue Statement

▪ When to Use break or continue?

▪ Check Point #17 - #22

161

Keywords break and continue

• The break and continue keywords provide additional controls
to a loop.

• break keyword breaks out of a loop.

• continue keyword breaks out of an iteration.

• Benefits of using these keywords:
➢ Can simplify programming in some cases.

• Negatives of using these keywords:
➢ Overuse or improperly using them can cause problems and make

programs difficult to read and debug.

1625.7

break Keyword

• You can use the keyword break in a loop to immediately
terminate a loop.

• Example:
LISTING 5.11 TestBreak.py

sum = 0

number = 0

while number < 20:

number += 1

sum += number

if sum >= 100:

break

print("The number is", number)

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

11

The number is 14

The sum is 105

1635.7

break Keyword

• Details:
◦ The program adds integers from 1 to 20 in

this order to sum until sum is greater than
or equal to 100.

◦ Without lines 7–8, this program would
calculate the sum of the numbers from 1 to
20.

◦ But with lines 7–8, the loop terminates
when sum becomes greater than or equal to
100.

◦ Without lines 7–8, the output would be:

LISTING 5.11 TestBreak.py

sum = 0

number = 0

while number < 20:

number += 1

sum += number

if sum >= 100:

break

print("The number is", number)

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

11

The number is 20

The sum is 210

1645.7

Trace break Statement

sum = 0

number = 0

while number < 10:

number += 1

sum += number

if sum >= 5:

break

print("The number is", number)

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

11

0sum →

Initialize sum to 0

1655.7 1 of 17

Trace break Statement

sum = 0

number = 0

while number < 10:

number += 1

sum += number

if sum >= 5:

break

print("The number is", number)

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

11

0sum →

Initialize number to 0

0number →

1665.7 2 of 17

Trace break Statement

sum = 0

number = 0

while number < 10:

number += 1

sum += number

if sum >= 5:

break

print("The number is", number)

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

11

0sum →

0 < 10 is True

0number →

1675.7 3 of 17

Trace break Statement

sum = 0

number = 0

while number < 10:

number += 1

sum += number

if sum >= 5:

break

print("The number is", number)

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

11

0sum →

Increment number by 1
number = 0 + 1

0number → 1

1685.7 4 of 17

Trace break Statement

sum = 0

number = 0

while number < 10:

number += 1

sum += number

if sum >= 5:

break

print("The number is", number)

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

11

1sum →

Add number to sum
sum = 0 + 1

1number → 0

1695.7 5 of 17

Trace break Statement

sum = 0

number = 0

while number < 10:

number += 1

sum += number

if sum >= 5:

break

print("The number is", number)

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

11

1sum →

1 >= 5 is False

1number →

1705.7 6 of 17

Trace break Statement

sum = 0

number = 0

while number < 10:

number += 1

sum += number

if sum >= 5:

break

print("The number is", number)

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

11

1sum →

1 < 10 is True

1number →

1715.7 7 of 17

Trace break Statement

sum = 0

number = 0

while number < 10:

number += 1

sum += number

if sum >= 5:

break

print("The number is", number)

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

11

1sum →

Increment number by 1
number = 1 + 1

1number → 2

1725.7 8 of 17

Trace break Statement

sum = 0

number = 0

while number < 10:

number += 1

sum += number

if sum >= 5:

break

print("The number is", number)

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

11

3sum →

Add number to sum
sum = 1 + 2

2number → 1

1735.7 9 of 17

Trace break Statement

sum = 0

number = 0

while number < 10:

number += 1

sum += number

if sum >= 5:

break

print("The number is", number)

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

11

3sum →

3 >= 5 is False

2number →

1745.7 10 of 17

Trace break Statement

sum = 0

number = 0

while number < 10:

number += 1

sum += number

if sum >= 5:

break

print("The number is", number)

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

11

3sum →

2 < 10 is True

2number →

1755.7 11 of 17

Trace break Statement

sum = 0

number = 0

while number < 10:

number += 1

sum += number

if sum >= 5:

break

print("The number is", number)

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

11

3sum →

Increment number by 1
number = 2 + 1

2number → 3

1765.7 12 of 17

Trace break Statement

sum = 0

number = 0

while number < 10:

number += 1

sum += number

if sum >= 5:

break

print("The number is", number)

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

11

6sum →

Add number to sum
sum = 3 + 3

3number → 3

1775.7 13 of 17

Trace break Statement

sum = 0

number = 0

while number < 10:

number += 1

sum += number

if sum >= 5:

break

print("The number is", number)

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

11

6sum →

6 >= 5 is True

3number →

1785.7 14 of 17

Trace break Statement

sum = 0

number = 0

while number < 10:

number += 1

sum += number

if sum >= 5:

break

print("The number is", number)

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

11

6sum →

Exit the current loop

3number →

1795.7 15 of 17

Trace break Statement

sum = 0

number = 0

while number < 10:

number += 1

sum += number

if sum >= 5:

break

print("The number is", number)

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

11

The number is 3

6sum →

Print “The number is 3”

3number →

1805.7 16 of 17

Trace break Statement

sum = 0

number = 0

while number < 10:

number += 1

sum += number

if sum >= 5:

break

print("The number is", number)

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

11

The number is 3

The sum is 6

6sum →

Print “The sum is 6”

3number →

1815.7 17 of 17

continue Keyword

• You can use the continue keyword in a loop to end the current
iteration, and program control goes to the end of the loop
body.

• Example:
LISTING 5.12 TestContinue.py

sum = 0

number = 0

while number < 20:

number += 1

if number == 10 or number == 11:

continue

sum += number

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

The sum is 189

1825.7

continue Keyword

• Details:
◦ The program adds all the integers from 1

to 20 except 10 and 11 to sum.

◦ The continue statement is executed
when number becomes 10 or 11.

◦ It ends the current iteration so that the
rest of the statement in the loop body is
not executed; therefore, number is not
added to sum when it is 10 or 11.

◦ Without lines 6 and 7, the output would
be as follows:

◦ In this case, all the numbers are added to
sum, even when number is 10 or 11.
Therefore, the result is 210.

LISTING 5.12 TestContinue.py

sum = 0

number = 0

while number < 20:

number += 1

if number == 10 or number == 11:

continue

sum += number

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

The sum is 210

1835.7

Trace continue Statement

sum = 0

number = 0

while number < 4:

number += 1

if number == 1 or number == 3:

continue

sum += number

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

0sum →

Initialize sum to 0

1845.7 1 of 20

Trace continue Statement

sum = 0

number = 0

while number < 4:

number += 1

if number == 1 or number == 3:

continue

sum += number

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

0sum →

Initialize number to 0

0number →

1855.7 2 of 20

Trace continue Statement

sum = 0

number = 0

while number < 4:

number += 1

if number == 1 or number == 3:

continue

sum += number

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

0sum →

0 < 4 is True

0number →

1865.7 3 of 20

Trace continue Statement

sum = 0

number = 0

while number < 4:

number += 1

if number == 1 or number == 3:

continue

sum += number

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

0sum →

Increment number by 1
number = 0 + 1

0number → 1

1875.7 4 of 20

Trace continue Statement

sum = 0

number = 0

while number < 4:

number += 1

if number == 1 or number == 3:

continue

sum += number

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

0sum →

(1 == 1) or (1 == 3) is
True

1number →

1885.7 5 of 20

Trace continue Statement

sum = 0

number = 0

while number < 4:

number += 1

if number == 1 or number == 3:

continue

sum += number

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

0sum →

End the current
iteration

1number →

1895.7 6 of 20

Trace continue Statement

sum = 0

number = 0

while number < 4:

number += 1

if number == 1 or number == 3:

continue

sum += number

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

0sum →

1 < 4 is True

1number →

1905.7 7 of 20

Trace continue Statement

sum = 0

number = 0

while number < 4:

number += 1

if number == 1 or number == 3:

continue

sum += number

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

0sum →

Increment number by 1
number = 1 + 1

1number → 2

1915.7 8 of 20

Trace continue Statement

sum = 0

number = 0

while number < 4:

number += 1

if number == 1 or number == 3:

continue

sum += number

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

0sum →

(2 == 1) or (2 == 3) is
False

2number →

1925.7 9 of 20

Trace continue Statement

sum = 0

number = 0

while number < 4:

number += 1

if number == 1 or number == 3:

continue

sum += number

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

Add number to sum
sum = 0 + 2

2number → 2sum → 0

1935.7 10 of 20

Trace continue Statement

sum = 0

number = 0

while number < 4:

number += 1

if number == 1 or number == 3:

continue

sum += number

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

2sum →

2 < 4 is True

2number →

1945.7 11 of 20

Trace continue Statement

sum = 0

number = 0

while number < 4:

number += 1

if number == 1 or number == 3:

continue

sum += number

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

2sum →

Increment number by 1
number = 2 + 1

2number → 3

1955.7 12 of 20

Trace continue Statement

sum = 0

number = 0

while number < 4:

number += 1

if number == 1 or number == 3:

continue

sum += number

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

2sum →

(3 == 1) or (3 == 3) is
True

3number →

1965.7 13 of 20

Trace continue Statement

sum = 0

number = 0

while number < 4:

number += 1

if number == 1 or number == 3:

continue

sum += number

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

2sum →

End the current
iteration

3number →

1975.7 14 of 20

Trace continue Statement

sum = 0

number = 0

while number < 4:

number += 1

if number == 1 or number == 3:

continue

sum += number

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

2sum →

3 < 4 is True

3number →

1985.7 15 of 20

Trace continue Statement

sum = 0

number = 0

while number < 4:

number += 1

if number == 1 or number == 3:

continue

sum += number

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

2sum →

Increment number by 1
number = 3 + 1

3number → 4

1995.7 16 of 20

Trace continue Statement

sum = 0

number = 0

while number < 4:

number += 1

if number == 1 or number == 3:

continue

sum += number

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

2sum →

(4 == 1) or (4 == 3) is
False

4number →

2005.7 17 of 20

Trace continue Statement

sum = 0

number = 0

while number < 4:

number += 1

if number == 1 or number == 3:

continue

sum += number

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

Add number to sum
sum = 2 + 4

4number → 6sum → 2

2015.7 18 of 20

Trace continue Statement

sum = 0

number = 0

while number < 4:

number += 1

if number == 1 or number == 3:

continue

sum += number

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

6sum →

4 < 4 is False

4number →

2025.7 19 of 20

Trace continue Statement

sum = 0

number = 0

while number < 4:

number += 1

if number == 1 or number == 3:

continue

sum += number

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

The sum is 6

6sum →

Print “The sum is 6”

4number →

2035.7 20 of 20

When to Use break or continue?

• You can always write a program without using break or
continue in a loop.

• In general, it is appropriate to use break and continue if their
use simplifies coding and makes programs easy to read.

• Suppose you need to write a program to find the smallest
factor other than 1 for an integer n (assume n >= 2).

◦ You can write a simple code using the break statement as follows:

n = eval(input("Enter an integer >= 2: "))

factor = 2

while factor <= n:

if n % factor == 0:

break

factor += 1

print("The smallest factor other than 1 for", n, "is", factor)

1

2

3

4

5

6

7

2045.7

Information
Factors of a Number

205

• The factors of a number are the numbers that divide evenly
into the number.

• For example: the factors of the number 12 are the numbers 1,
2, 3, 4, 6 and 12.
▪ 12 % 1 = 0 12 % 2 = 0 12 % 3 = 0

▪ 12 % 4 = 0 12 % 5 = 2 12 % 6 = 0

▪ 12 % 7 = 5 12 % 8 = 4 12 % 9 = 3

▪ 12 % 10 = 2 12 % 11 = 1 12 % 12 = 0

• Notice that the smallest factor is always 1 and the biggest
factor is always the number itself.

5.7

When to Use break or continue?

• You may rewrite the code without using break as follows:

• Obviously, the break statement makes the program simpler
and easier to read in this example.

• However, you should use break and continue with caution.
◦ Too many break and continue statements will produce a loop with

many exit points and make the program difficult to read.

n = eval(input("Enter an integer >= 2: "))

found = False

factor = 2

while factor <= n and not found:

if n % factor == 0:

found = True

else:

factor += 1

print("The smallest factor other than 1 for", n, "is", factor)

1

2

3

4

5

6

7

8

9

2065.7

Check Point
#17

What is the keyword break for? What is the keyword continue
for? Will the following program terminate? If so, give the output.

➢ Answer:
▪ The keyword break is used to exit the current loop.

▪ The keyword continue causes the rest of the loop body to be skipped for the
current iteration.

▪ The program in (a) will terminate. The output is Balance is 1.

▪ The while loop will not terminate in (b).

balance = 1000

while True:

if balance < 9:

break

balance = balance - 9

print("Balance is", balance)

1

2

3

4

5

6

(a)

balance = 1000

while True:

if balance < 9:

continue

balance = balance - 9

print("Balance is", balance)

1

2

3

4

5

6

(b)

2075.7

Check Point
#18

The for loop on the left is converted into the while loop on the
right. What is wrong? Correct it.

➢ Answer:
▪ In (a), If the continue statement is executed inside the for loop, the rest of the

iteration is skipped, then the loop control variable (i) is being updated to the
next unused item in the sequence. This code (a) is correct.

▪ In (b), If the continue statement is executed inside the while loop, the rest of the
iteration is skipped, and the loop control variable (i) wouldn't get updated, so
the loop condition will be always True. This code (b) has an infinite loop.

sum = 0

for i in range(4):

if i % 3 == 0:

continue

sum += i

print(sum)

1

2

3

4

5

6

Converted

Wrong Conversion

sum = 0

i = 0

while i < 4:

if i % 3 == 0:

continue

sum += i

i += 1

print(sum)

1

2

3

4

5

6

7

8(a)
(b) Wrong

2085.7

Check Point
#18

The for loop on the left is converted into the while loop on the
right. What is wrong? Correct it.

➢ Here is the fix (b):

sum = 0

for i in range(4):

if i % 3 == 0:

continue

sum += i

print(sum)

1

2

3

4

5

6

(a)

Converted

Correct
Conversion

sum = 0

i = 0

while i < 4:

if i % 3 == 0:

i += 1

continue

sum += i

i += 1

print(sum)

1

2

3

4

5

6

7

8

9

(b) Correct

2095.7

Check Point
#19

After the break statement is executed in the following loop,
which statement is executed? Show the output.

➢ Answer:
➢ The break keyword immediately ends the innermost loop, which contains the

break.

➢ So, print(i) is the next statement that will be executed.

for i in range(1, 4):

for j in range(1, 4):

if i * j > 2:

break

print(i * j)

print(i)

1

2

3

4

5

6

7

8

1

2

1

2

2

3

2105.7

Check Point
#20

After the continue statement is executed in the following loop,
which statement is executed? Show the output.

➢ Answer:
➢ The continue keyword ends only the current iteration.

➢ If j is not the last item in the sequence, j is getting updated to the next unused
item in the sequence, and if i * j > 2 is the next statement that will be executed.

➢ If j is the last item in the sequence, print(i) is the next statement that will be
executed.

for i in range(1, 4):

for j in range(1, 4):

if i * j > 2:

continue

print(i * j)

print(i)

1

2

3

4

5

6

7

8

1

2

1

2

2

3

2115.7

Check Point
#21

Rewrite the following program without using break and continue
statements.

LISTING 5.11 TestBreak.py

sum = 0

number = 0

while number < 20:

number += 1

sum += number

if sum >= 100:

break

print("The number is", number)

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

11

TestBreakWithoutBreak.py

sum = 0

number = 0

stop = False

while number < 20 and not stop:

number += 1

sum += number

if sum >= 100:

stop = True

print("The number is", number)

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

11

Solution

2125.7

Check Point
#22

Rewrite the following program without using break and continue
statements.

LISTING 5.12 TestContinue.py

sum = 0

number = 0

while number < 20:

number += 1

if number == 10 or number == 11:

continue

sum += number

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

10

Solution

TestContinueWithoutContinue.py

sum = 0

number = 0

while number < 20:

number += 1

if number != 10 and number != 11:

sum += number

print("The sum is", sum)

1

2

3

4

5

6

7

8

9

2135.7

5.8. Case Study: Displaying Prime
Numbers

▪ Program 9: Prime Number

▪ Coding with Loops

214

Prime Number
Program 9

Write a program to display the first 50 prime numbers in five
lines (so 10 numbers per line).

• Note: any integer greater than 1 is prime if it can only be divided by
1 or itself.

• Example:
▪ 2, 3, 5, and 7 are prime numbers

▪ 4, 6, 8, and 9 are not prime numbers

The first 50 prime numbers are

2 3 5 7 11 13 17 19 23 29

31 37 41 43 47 53 59 61 67 71

73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173

179 181 191 193 197 199 211 223 227 229

2155.8 Program 9

Prime Number
Phase 1: Problem-solving

• Think:
◦ How can we solve this?

◦ We need to check each integer greater than 1.
▪ so start at 2, then 3, then 4, then 5, …

◦ And for each of those integers, we need to check if it is prime.

◦ If it is prime, we need to increase our count.
▪ Because we found a new prime number.

◦ And we also need to print it to the screen.
▪ But we can only print 10 per line.

▪ So we need to consider how many have been printed already.

2165.8 Program 9

Prime Number
Phase 1: Problem-solving

• Think:
◦ So we need a loop!

◦ How many times will we loop?
▪ Many times.

▪ Because we are checking each integer greater than 1 to determine if it is a
prime number.

◦ So will the loop go on for infinity?
▪ No!

◦ So for how long will the loop run?
▪ Until we find and print 50 prime numbers!

▪ Guess what: we now have our loop-continuation-condition!

2175.8 Program 9

Prime Number
Phase 2: Implementation (1st Draft)

PrimeNumber.py

NUMBER_OF_PRIMES = 50 # Number of primes to display

NUMBER_OF_PRIMES_PER_LINE = 10 # Display 10 per line

count = 0 # Count the number of prime numbers

number = 2 # A number to be tested for primeness

print("The first 50 prime numbers are")

Repeatedly find prime numbers

while count < NUMBER_OF_PRIMES:

Assume the number is prime

isPrime = True #Is the current number prime?

Test if number is prime

To do it later ...

If number is prime, display the prime number and increase the count

if isPrime:

count += 1 # Increase the count

print(format(number, '5d'), end = '')

if count % NUMBER_OF_PRIMES_PER_LINE == 0:

Display the number and advance to the new line

print() # Jump to the new line

Check if the next number is prime

number += 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

2185.8 Program 9

Prime Number
Phase 1: Problem-solving

• The output of the previous code:

• So, we need now to filter the numbers and display only the
prime numbers.

• This will be the next step.

The first 50 prime numbers are

2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21

22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41

42 43 44 45 46 47 48 49 50 51

2195.8 Program 9

Prime Number
Phase 1: Problem-solving

• Think:
◦ Given a number, how can we determine if it is prime?

◦ Check if it is divisible by 2, 3, 4, …, (number // 2)
▪ If any of those values evenly divide number, then it is not prime.

◦ So we use a for loop (from 2 until number // 2)

◦ Example: consider the number 11.
▪ Check from 2 to 5 (11//2 = 5)

▪ 2 does not divide into 11

▪ 3 does not divide into 11

▪ 4 does not divide into 11

▪ 5 does not divide into 11

▪ Therefore, 11 is prime!

2205.8 Program 9

Prime Number
Phase 1: Problem-solving

• So, the code of the inner loop (filtering the non prime
numbers) can be as the following:

Assume the number is prime

isPrime = True #Is the current number prime?

Test if number is prime

divisor = 2

while divisor <= number / 2:

if number % divisor == 0:

If true, the number is not prime

isPrime = False # Set isPrime to false

break # Exit the for loop

divisor += 1

1

2

3

4

5

6

7

8

9

10

11

2215.8 Program 9

Prime Number
Phase 2: Implementation (Final)

LISTING 5.13 PrimeNumber.py

NUMBER_OF_PRIMES = 50 # Number of primes to display

NUMBER_OF_PRIMES_PER_LINE = 10 # Display 10 per line

count = 0 # Count the number of prime numbers

number = 2 # A number to be tested for primeness

print("The first 50 prime numbers are")

Repeatedly find prime numbers

while count < NUMBER_OF_PRIMES:

Assume the number is prime

isPrime = True #Is the current number prime?

Test if number is prime

divisor = 2

while divisor <= number / 2:

if number % divisor == 0:

If true, the number is not prime

isPrime = False # Set isPrime to false

break # Exit the for loop

divisor += 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

2225.8 Program 9

Prime Number
Phase 2: Implementation (Final)

LISTING 5.13 PrimeNumber.py

If number is prime, display the prime number and increase the count

if isPrime:

count += 1 # Increase the count

print(format(number, '5d'), end = '')

if count % NUMBER_OF_PRIMES_PER_LINE == 0:

Display the number and advance to the new line

print() # Jump to the new line

Check if the next number is prime

number += 1

22

23

24

25

26

27

28

29

30

31

32

2235.8 Program 9

Coding with Loops

• This last example (Program 9) was complicated.

• If you understand it, congratulations!

• Question:
◦ How can new programmers develop a solution similar to what we

just did?

• Answer:
◦ Break the problem into smaller sub-problems.

◦ Develop solutions for each of those sub-problems.

• Then bring the smaller solutions together into one larger
solution.

2245.8

End

▪ Test Questions

▪ Programming Exercises

225

Test Questions

• Do the test questions for this chapter online at
https://liveexample-ppe.pearsoncmg.com/selftest/selftestpy?chapter=5

226End

https://liveexample-ppe.pearsoncmg.com/selftest/selftestpy?chapter=5

Programming Exercises

• Page 158 – 167:
◦ 5.1 - 5.16

◦ 5.18 - 5.22

◦ 5.23 – 5.41

◦ 5.43 – 5.46

227End

